Genome-scale analysis of demographic history and adaptive selection

Qi Wu, Pingping Zheng, Yibu Hu, Fuwen Wei

PDF(922 KB)
PDF(922 KB)
Protein Cell ›› 2014, Vol. 5 ›› Issue (2) : 99-112. DOI: 10.1007/s13238-013-0004-1
REVIEW
REVIEW

Genome-scale analysis of demographic history and adaptive selection

Author information +
History +

Abstract

One of the main topics in population genetics is identification of adaptive selection among populations. For this purpose, population history should be correctly inferred to evaluate the effect of random drift and exclude it in selection identification. With the rapid progress in genomics in the past decade, vast genomescale variations are available for population genetic analysis, which however requires more sophisticated models to infer species’ demographic history and robust methods to detect local adaptation. Here we aim to review what have been achieved in the fields of demographic modeling and selection detection. We summarize their rationales, implementations, and some classical applications. We also propose that some widely-used methods can be improved in both theoretical and practical aspects in near future.

Keywords

genomics / demographic history / local adaptation / natural selection

Cite this article

Download citation ▾
Qi Wu, Pingping Zheng, Yibu Hu, Fuwen Wei. Genome-scale analysis of demographic history and adaptive selection. Protein Cell, 2014, 5(2): 99‒112 https://doi.org/10.1007/s13238-013-0004-1

References

[1]
AdamsAM, HudsonRR (2004) Maximum-likelihood estimation of demographic parameters using the frequency spectrum of unlinked single-nucleotide polymorphisms. Genetics168: 1699-1712
CrossRef Google scholar
[2]
AkeyJM, ZhangG, ZhangK, JinL, ShriverMD (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Res12: 1805-1814
CrossRef Google scholar
[3]
AxelssonE, RatnakumarA, ArendtML, MaqboolK, WebsterMT, PerloskiM, LibergO, ArnemoJM, HedhammarA, Lindblad-Toh K (2013) The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature495: 360-364
CrossRef Google scholar
[4]
BatiniC, LopesJ, BeharDM, CalafellF, JordeLB, VanderVeenL, Quintana-MurciL, SpediniG, Destro-BisolG, ComasD (2011) Insights into the demographic history of African Pygmies from complete mitochondrial genomes. Mol Biol Evol28: 1099-1110
CrossRef Google scholar
[5]
BeaumontMA (2010) Approximate Bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst41: 379-406
CrossRef Google scholar
[6]
BecquetC, PrzeworskiM (2007) A new approach to estimate parameters of speciation models with application to apes. Genome Res17: 1505-1519
CrossRef Google scholar
[7]
BustamanteCD, Fledel-AlonA, WilliamsonS, NielsenR, HubiszMT, GlanowskiS, TanenbaumDM, WhiteTJ, SninskyJJ, HernandezRD, CivelloD, AdamsMD, CargillM, ClarkAG (2005) Natural selectionon protein-coding genes in the human genome. Nature437: 1153-1157
CrossRef Google scholar
[8]
ClarkAG, GlanowskiS, NielsenR, ThomasPD, KejariwalA, ToddMA, TanenbaumDM, CivelloD, LuF, MurphyB (2003) Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science302: 1960-1963
CrossRef Google scholar
[9]
CockerhamCC, WeirBS (1993) Estimation of gene flow from F-statistics. Evolution47: 855-863
CrossRef Google scholar
[10]
CrisciJL, PohY, BeanA, SimkinA, JensenJD (2012) Recent progress in polymorphism-based population genetic inference. J Hered103: 287-296
CrossRef Google scholar
[11]
DarwinC (1859) On the origin of species. John Murray, London
[12]
ExcoffierL, HoferT, FollM (2009) Detecting loci under selection in a hierarchically structured population. Heredity (Edinb)103: 285-298
CrossRef Google scholar
[13]
ExcoffierL, LischerHE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour10: 564-567
CrossRef Google scholar
[14]
FayJC, WuCI (2000) Hitchhiking under positive Darwinian selection. Genetics155: 1405-1413
[15]
FisherRA (1930) The genetical theory of natural selection. Clarendon Press, Oxford
[16]
FuYX, LiWH (1993) Statistical tests of neutrality of mutations. Genetics133: 693-709
[17]
GrigorievIV, NordbergH, ShabalovI, AertsA, CantorM, GoodsteinD, KuoA, MinovitskyS, NikitinR, OhmRA (2013) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res40(Database issue): D26-D32
[18]
GrossmanSR, ShlyakhterI, KarlssonEK, ByrneEH, MoralesS, FriedenG, HostetterE, AngelinoE, GarberM, ZukO (2010) A composite of multiple signals distinguishes causal variants in regions of positive selection. Science327: 883-886
CrossRef Google scholar
[19]
GrossmanSR, AndersenKG, ShlyakhterI, TabriziS, WinnickiS, YenA, ParkDJ, GriesemerD, KarlssonEK, WongSH (2013) Identifying recent adaptations in large-scale genomic data. Cell152: 703-713
CrossRef Google scholar
[20]
GutenkunstRN, HernandezRD, WilliamsonSH, BustamanteCD (2009) Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet5: e1000695
CrossRef Google scholar
[21]
HakenH (1983) Synergetics. Springer, Berlin
CrossRef Google scholar
[22]
HartlDL, ClarkAG (2007) Principles of population genetics, 4th edn. Sinauer Associates Inc, Sunderland
[23]
HernandezRD, WilliamsonSH, BustamanteCD (2007) Context dependence, ancestral misidentification, and spurious signatures of natural selection. Mol Biol Evol24: 1792-1800
CrossRef Google scholar
[24]
HeyJ (2010) Isolation with migration models for more than two populations. Mol Biol Evol27: 905-920
CrossRef Google scholar
[25]
HeyJ, NielsenR (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics167: 747-760
CrossRef Google scholar
[26]
HudsonRR, KreitmanM, AguadeM (1987) A test of neutral molecular evolution based on nucleotide data. Genetics116: 153-159
[27]
HuoT, ZhangY, LinJ (2012) Functional annotation from the genome sequence of the giant panda. Protein Cell3: 602-608
CrossRef Google scholar
[28]
HwangDG, GreenP (2004) Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. Proc Natl Acad Sci USA101: 13994-14001
CrossRef Google scholar
[29]
International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature409: 860-921
CrossRef Google scholar
[30]
KimuraM (1955) Solution of a process of random genetic drift with a continuous model. Proc Natl Acad Sci USA41: 144-150
CrossRef Google scholar
[31]
KimuraM (1968) Evolutionary rate at the molecular level. Nature217: 624-626
CrossRef Google scholar
[32]
KosiolC, VinarT, da FonsecaRR, HubiszMJ, BustamanteCD, NielsenR, SiepelA (2008) Patterns of positive selection in six Mammalian genomes. PLoS Genet4: e1000144
CrossRef Google scholar
[33]
KreitmanM, AkashiH (1995) Molecular evidence for natural selection. Annu Rev Ecol Syst26: 403-422
CrossRef Google scholar
[34]
LamHM, XuX, LiuX, ChenW, YangG, WongFL, LiMW, HeW, QinN, WangB (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet42: 1053-1059
CrossRef Google scholar
[35]
LiH, DurbinR (2011) Inference of human population history from individual whole-genome sequences. Nature475: 493-496
CrossRef Google scholar
[36]
LiMH, Iso-TouruT, LaurenH, KantanenJ (2010) A microsatellitebased analysis for the detection of selection on BTA1 and BTA20 in northern Eurasian cattle (Bostaurus) populations. Genet Sel Evol42: 32
CrossRef Google scholar
[37]
LopesJS, BaldingD, BeaumontMA (2009) PopABC: a program to infer historical demographic parameters. Bioinformatics25: 2747-2749
CrossRef Google scholar
[38]
MannionAM (1999) Domestication and the origins of agriculture: an appraisal. Prog Phys Geogr23: 37-56
[39]
McDonaldJH, KreitmanM (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature351: 652-654
CrossRef Google scholar
[40]
McVeanGA, CardinNJ (2005) Approximating the coalescent with recombination. Philos Trans R Soc Lond B Biol Sci360: 1387-1393
CrossRef Google scholar
[41]
MillerW, SchusterSC, WelchAJ, RatanA, Bedoya-ReinaOC, ZhaoF, KimHL, BurhansRC, DrautzDI, WittekindtNE (2012) Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc Natl Acad Sci USA109: E2382-E2390
CrossRef Google scholar
[42]
NachmanMW, PayseurBA (2012) Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Trans R Soc Lond B Biol Sci367: 409-421
CrossRef Google scholar
[43]
NCBI Resource Coordinators (2013) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res41(Database issue): D8-D20
[44]
NeiM (2005) Selectionism and neutralism in molecular evolution. Mol Biol Evol22: 2318-2342
CrossRef Google scholar
[45]
NeiM, KumarS (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford
[46]
NielsenR, WakeleyJ (2001) Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics158: 885-896
[47]
NielsenR, BustamanteC, ClarkAG, GlanowskiS, SacktonTB, HubiszMJ, Fledel-AlonA, TanenbaumDM, CivelloD, WhiteTJ (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol3: e170
CrossRef Google scholar
[48]
NielsenR, HellmannI, HubiszM, BustamanteC, ClarkAG (2007) Recent and ongoing selection in the human genome. Nat Rev Genet8: 857-868
CrossRef Google scholar
[49]
OhtaT (1992) The nearly neutral theory of molecular evolution. Annu Rev Ecol Syst23: 263-286
CrossRef Google scholar
[50]
PaleroF, LopesJ, AbelloP, MacphersonE, PascualM, BeaumontMA (2009) Rapid radiation in spiny lobsters, Palinurus spp) as revealed by classic and ABC methods using mtDNA and microsatellite data. BMC Evol Biol9: 263
CrossRef Google scholar
[51]
RubinCJ, ZodyMC, ErikssonJ, MeadowsJR, SherwoodE, WebsterMT, JiangL, IngmanM, SharpeT, KaS (2010) Whole-genome resequencing reveals loci under selection during chicken domestication. Nature464: 587-591
CrossRef Google scholar
[52]
SabetiPC, ReichDE, HigginsJM, LevineHZ, RichterDJ, SchaffnerSF, GabrielSB, PlatkoJV, PattersonNJ, McDonaldGJ (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature419: 832-837
CrossRef Google scholar
[53]
SabetiPC, SchaffnerSF, FryB, LohmuellerJ, VarillyP, ShamovskyO, PalmaA, MikkelsenTS, AltshulerD, LanderES (2006) Positive natural selection in the human lineage. Science312: 1614-1620
CrossRef Google scholar
[54]
SabetiPC, VarillyP, FryB, LohmuellerJ, HostetterE, CotsapasC, XieX, ByrneEH, McCarrollSA, GaudetR (2007) Genomewide detection and characterization of positive selection in human populations. Nature449: 913-918
CrossRef Google scholar
[55]
SimonsonTS, YangY, HuffCD, YunH, QinG, WitherspoonDJ, BaiZ, LorenzoFR, XingJ, JordeLB (2010) Genetic evidence for high-altitude adaptation in Tibet. Science329: 72-75
CrossRef Google scholar
[56]
SlatkinM, VoelmL (1991) FST in a hierarchical island model. Genetics127: 627-629
[57]
TajimaF (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics123: 585-595
[58]
ThorntonK, AndolfattoP (2006) Approximate Bayesian inference reveals evidence for a recent, severe bottleneck in a Netherlands population of Drosophila melanogaster. Genetics172: 1607-1619
CrossRef Google scholar
[59]
ToomajianC, HuTT, AranzanaMJ, ListerC, TangC, ZhengH, ZhaoK, CalabreseP, DeanC, NordborgM (2006) A nonparametric test reveals selection for rapid flowering in the Arabidopsis genome. PLoS Biol4: e137
CrossRef Google scholar
[60]
VoightBF, KudaravalliS, WenX, PritchardJK (2006) A map of recent positive selection in the human genome. PLoS Biol4: e72
CrossRef Google scholar
[61]
VonholdtBM, PollingerJP, LohmuellerKE, HanE, ParkerHG, QuignonP, DegenhardtJD, BoykoAR, EarlDA, AutonA (2010) Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature464: 898-902
CrossRef Google scholar
[62]
WeirBS, CockerhamCC (1984) Estimating F-statistics for the analysis of population structure. Evolution38: 1358-1370
CrossRef Google scholar
[63]
WilliamsonSH, HernandezR, Fledel-AlonA, ZhuL, NielsenR, BustamanteCD (2005) Simultaneous inference of selection and population growth from patterns of variation in the human genome. Proc Natl Acad Sci USA102: 7882-7887
CrossRef Google scholar
[64]
WoodingS, RogersA (2002) The matrix coalescent and an application to human single-nucleotide polymorphisms. Genetics161: 1641-1650
[65]
WrightS (1943) Isolation by distance. Genetics28: 114-138
[66]
WrightSI, CharlesworthB (2004) The HKA test revisited: a maximum-likelihood-ratio test of the standard neutral model. Genetics168: 1071-1076
CrossRef Google scholar
[67]
YangZ (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci13: 555-556
[68]
YangZ (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol15: 568-573
CrossRef Google scholar
[69]
YangZ (2006) Computational molecular evolution. Oxford University Press, Oxford
CrossRef Google scholar
[70]
YangZ (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol24: 1586-1591
CrossRef Google scholar
[71]
YangZ, dos ReisM (2011) Statistical properties of the branch-site test of positive selection. Mol Biol Evol28: 1217-1228
CrossRef Google scholar
[72]
YangZ, NielsenR (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol19: 908-917
CrossRef Google scholar
[73]
YangZ, NielsenR (2008) Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. Mol Biol Evol25: 568-579
CrossRef Google scholar
[74]
YiX, LiangY, Huerta-SanchezE, JinX, CuoZX, PoolJE, XuX, JiangH, VinckenboschN, KorneliussenTS (2010a) Sequencing of 50 human exomes reveals adaptation to high altitude. Science329: 75-78
CrossRef Google scholar
[75]
YiX, LiangY, Huerta-SanchezE, JinX, CuoZX, PoolJE, XuX, JiangH, VinckenboschN, KorneliussenTS (2010b) Sequencing of 50 human exomes reveals adaptation to high altitude. Science329: 75-78
CrossRef Google scholar
[76]
ZhanX, PanS, WangJ, DixonA, HeJ, MullerMG, NiP, HuL, LiuY, HouH (2013) Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle. Nat Genet45: 563-566
CrossRef Google scholar
[77]
ZhangJ, NielsenR, YangZ (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol22: 2472-2479
CrossRef Google scholar
[78]
ZhangG, CowledC, ShiZ, HuangZ, Bishop-LillyKA, FangX, WynneJW, XiongZ, BakerML, ZhaoW (2013) Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science339: 456-460
CrossRef Google scholar
[79]
ZhaoS, ZhengP, DongS, ZhanX, WuQ, GuoX, HuY, HeW, ZhangS, FanW (2013) Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat Genet45: 67-71
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(922 KB)

Accesses

Citations

Detail

Sections
Recommended

/