[1] Ahmad, A., and Cao, X. (2012). Plant PRMTs broaden the scope of arginine methylation.
J Genet Genomics (In Press) .
10.1016/j.jgg.2012.04.001[2] Ahmad, A., Zhang, Y., and Cao, X.F. (2010). Decoding the epigenetic language of plant development.
Mol Plant 3, 719-728 .
10.1093/mp/ssq026[3] Amasino, R.M. (2005). Vernalization and flowering time.
Curr Opin Biotechnol 16, 154-158 .
10.1016/j.copbio.2005.02.004[4] Ausin, I., Alonso-Blanco, C., Jarillo, J.A., Ruiz-Garcia, L., and Martinez-Zapater, J.M. (2004). Regulation of flowering time by FVE, a retinoblastoma-associated protein.
Nat Genet 36, 162-166 .
10.1038/ng1295[5] Bechtold, N., and Pelletier, G. (1998). In planta agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration.
Arabidopsis Protoc 82, 259-266 .
10.1385/0-89603-391-0:259[6] Bedford, M.T., and Clarke, S.G. (2009). Protein arginine methylation in mammals: who, what, and why.
Mol Cell 33, 1-13 .
10.1016/j.molcel.2008.12.013[7] Cheng, X., Collins, R., and Zhang, X. (2005). Structural and sequence motifs of protein (histone) methylation enzymes.
Annu Rev Biophys Biomol Struct 34, 267-294 .
10.1146/annurev.biophys.34.040204.144452[8] Cheng, Y., Frazier, M., Lu, F., Cao, X., and Redinbo, M.R. (2011). Crystal structure of the plant epigenetic protein arginine methyltransferase 10.
J Mol Biol 414, 106-122 .
10.1016/j.jmb.2011.09.040[9] Deng, X., Gu, L., Liu, C., Lu, T., Lu, F., Lu, Z., Cui, P., Pei, Y., Wang, B., Hu, S.,
. (2010). Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing.
Proc Natl Acad Sci U S A 107, 19114-19119 .
10.1073/pnas.1009669107[10] Frankel, A., Yadav, N., Lee, J., Branscombe, T.L., Clarke, S., and Bedford, M.T. (2002). The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity.
J Biol Chem 277, 3537-3543 .
10.1074/jbc.M108786200[11] Gui, S., Wooderchak, W.L., Daly, M.P., Porter, P.J., Johnson, S.J., and Hevel, J.M. (2011). Investigation of the molecular origins of protein-arginine methyltransferase I (PRMT1) product specificity reveals a role for two conserved methionine residues.
J Biol Chem 286, 29118-29126 .
10.1074/jbc.M111.224097[12] He, Y. (2009). Control of the transition to flowering by chromatin modifications.
Mol Plant 2, 554-564 .
10.1093/mp/ssp005[13] Herrmann, F., and Fackelmayer, F. (2009). Nucleo-cytoplasmic shuttling of protein arginine methyltransferase 1 (PRMT1) requires enzymatic activity.
Genes Cells 14, 309-317 .
10.1111/j.1365-2443.2008.01266.x[14] Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E., and Stamler, J.S. (2005). Protein S-nitrosylation: purview and parameters.
N at Rev Mol Cell Biol 6, 150-166 .
[15] Higashimoto, K., Kuhn, P., Desai, D., Cheng, X., and Xu, W. (2007). Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1.
Proc Natl Acad Sci U S A 104, 12318-12323 .
10.1073/pnas.0610792104[16] Hong, S., Song, H.R., Lutz, K., Kerstetter, R.A., Michael, T.P., and McClung, C.R. (2010). Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana.
Proc Natl Acad Sci U S A 107, 21211-21216 .
10.1073/pnas.1011987107[17] Hwang, H., Pierce, B., Mintseris, J., Janin, J., and Weng, Z. (2008). Protein-protein docking benchmark version 3.0.
Proteins 73, 705-709 .
10.1002/prot.22106[18] Jiang, D., Yang, W., He, Y., and Amasino, R.M. (2007). Arabidopsis relatives of the human lysine-specific demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition.
Plant Cell 19, 2975-2987 .
10.1105/tpc.107.052373[19] Kuhn, P., Chumanov, R., Wang, Y., Ge, Y., Burgess, R.R., and Xu, W. (2011). Automethylation of CARM1 allows coupling of transcription and mRNA splicing.
Nucleic Acids Res 39, 2717-2726 .
10.1093/nar/gkq1246[20] Kuhn, P., Xu, Q., Cline, E., Zhang, D., Ge, Y., and Xu, W. (2009). Delineating Anopheles gambiae coactivator associated arginine methyltransferase 1 automethylation using top-down high resolution tandem mass spectrometry.
Protein Sci 18, 1272-1280 .
10.1002/pro.139[21] Kwak, Y.T., Guo, J., Prajapati, S., Park, K.J., Surabhi, R.M., Miller, B., Gehrig, P., and Gaynor, R.B. (2003). Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties.
Mol Cell 11, 1055-1066 .
10.1016/S1097-2765(03)00101-1[22] Lee, I., Aukerman, M., Gore, S., Lohman, K., Michaels, S., Weaver, L., John, M., Feldmann, K., and Amasino, R. (1994). Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis.
The Plant Cell 6, 75-83 .
[23] Lee, Y.H., Koh, S.S., Zhang, X., Cheng, X., and Stallcup, M.R. (2002). Synergy among nuclear receptor coactivators: selective requirement for protein methyltransferase and acetyltransferase activities.
Mol Cell Biol 22, 3621-3632 .
10.1128/MCB.22.11.3621-3632.2002[24] Li, F., Huarte, M., Zaratiegui, M., Vaughn, M.W., Shi, Y., Martienssen, R., and Cande, W.Z. (2008). Lid2 is required for coordinating H3K4 and H3K9 methylation of heterochromatin and euchromatin.
Cell 135, 272-283 .
10.1016/j.cell.2008.08.036[25] Lim, M.H., Kim, J., Kim, Y.S., Chung, K.S., Seo, Y.H., Lee, I., Hong, C.B., Kim, H.J., and Park, C.M. (2004). A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C.
Plant Cell 16, 731-740 .
10.1105/tpc.019331[26] Liu, C., Lu, F., Cui, X., and Cao, X. (2010). Histone methylation in higher plants.
Annu Rev Plant Biol 61, 395-420 .
10.1146/annurev.arplant.043008.091939[27] Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., and Cobbett, C. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains.
Cell 89, 737-745 .
10.1016/S0092-8674(00)80256-1[28] Michaels, S.D., and Amasino, R.M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering.
Plant Cell 11, 949-956 .
[29] Niu, L., Lu, F., Pei, Y., Liu, C., and Cao, X. (2007). Regulation of flowering time by the protein arginine methyltransferase AtPRMT10.
EMBO Rep 8, 1190-1195 .
10.1038/sj.embor.7401111[30] Niu, L., Zhang, Y., Pei, Y., Liu, C., and Cao, X. (2008). Redundant requirement for a pair of PROTEIN ARGININE METHYLTRANSFERASE4 homologs for the proper regulation of Arabidopsis flowering time.
Plant Physiol 148, 490-503 .
10.1104/pp.108.124727[31] Noh, B., Lee, S.H., Kim, H.J., Yi, G., Shin, E.A., Lee, M., Jung, K.J., Doyle, M.R., Amasino, R.M., and Noh, Y.S. (2004). Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time.
Plant Cell 16, 2601-2613 .
10.1105/tpc.104.025353[32] Pei, Y., Niu, L., Lu, F., Liu, C., Zhai, J., Kong, X., and Cao, X. (2007). Mutations in the Type II protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis.
Plant Physiol 144, 1913-1923 .
10.1104/pp.107.099531[33] Quesada, V., Dean, C., and Simpson, G.G. (2005). Regulated RNA processing in the control of Arabidopsis flowering.
Int J Dev Biol 49, 773-780 .
10.1387/ijdb.051995vq[34] Sanchez, S.E., Petrillo, E., Beckwith, E.J., Zhang, X., Rugnone, M.L., Hernando, C.E., Cuevas, J.C., Godoy Herz, M.A., Depetris-Chauvin, A., Simpson, C.G.,
. (2010). A methyl transferase links the circadian clock to the regulation of alternative splicing.
Nature 468, 112-116 .
10.1038/nature09470[35] Sayegh, J., Webb, K., Cheng, D., Bedford, M.T., and Clarke, S.G. (2007). Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain.
J Biol Chem 282, 36444-36453 .
10.1074/jbc.M704650200[36] Schmitz, R.J., Sung, S., and Amasino, R.M. (2008). Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana.
Proc Natl Acad Sci U S A 105, 411-416 .
10.1073/pnas.0710423104[37] Schluckebier, G., O'Gara, M., Saenger, W., and Cheng, X. (1995). Universal catalytic domain structure of AdoMet-dependent methyltransferases.
J Mol Biol 247, 16-20 .
10.1006/jmbi.1994.0117[38] Schomburg, F.M., Patton, D.A., Meinke, D.W., and Amasino, R.M. (2001). FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs.
Plant Cell 13, 1427-1436 .
[39] Simpson, G.G. (2004). The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time.
Curr Opin Plant Biol 7, 570-574 .
10.1016/j.pbi.2004.07.002[40] Simpson, G.G., Dijkwel, P.P., Quesada, V., Henderson, I., and Dean, C. (2003). FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transition.
Cell 113, 777-787 .
10.1016/S0092-8674(03)00425-2[41] Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., Zuo, J., and Dong, X. (2008). Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins.
Science 321, 952-956 .
10.1126/science.1156970[42] Wada, K., Inoue, K., and Hagiwara, M. (2002). Identification of methylated proteins by protein arginine N-methyltransferase 1, PRMT1, with a new expression cloning strategy.
Biochim Biophys Acta 1591, 1-10 .
10.1016/S0167-4889(02)00202-1[43] Wang, X., Zhang, Y., Ma, Q., Zhang, Z., Xue, Y., Bao, S., and Chong, K. (2007). SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis.
EMBO J 26, 1934-1941 .
10.1038/sj.emboj.7601647[44] Weiss, V., McBride, A., Soriano, M., Filman, D., Silver, P., and Hogle, J. (2000). The structure and oligomerization of the yeast arginine methyltransferase, Hmt1.
Nat Struct Biol 7, 1165-1171 .
10.1038/78941[45] Wolf, S.S. (2009). The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans.
Cell Mol Life Sci 66, 2109-2121 .
10.1007/s00018-009-0010-x[46] Xu, W., Cho, H., Kadam, S., Banayo, E.M., Anderson, S., Yates, J.R., Emerson, B.M., and Evans, R.M. (2004). A methylation-mediator complex in hormone signaling.
Genes Dev 18, 144-156 .
10.1101/gad.1141704[47] Yan, D., Zhang, Y., Niu, L., Yuan, Y., and Cao, X. (2007). Identification and characterization of two closely related histone H4 arginine 3 methyltransferases in Arabidopsis thaliana.
Biochem J 408, 113-121 .
10.1042/BJ20070786[48] Zhang, J., Teng, C., and Liang, Y. (2011a). Programmed cell death may act as a surveillance mechanism to safeguard male gametophyte development in Arabidopsis.
Protein Cell 2, 837-844 .
10.1007/s13238-011-1102-6[49] Zhang, X., and Cheng, X. (2003). Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides.
Structure 11, 509-520 .
10.1016/S0969-2126(03)00071-6[50] Zhang, X., Zhou, L., and Cheng, X. (2000). Crystal structure of the conserved core of protein arginine methyltransferase PRMT3.
EMBO J 19, 3509-3519 .
10.1093/emboj/19.14.3509[51] Zhang, Z., Zhang, S., Zhang, Y., Wang, X., Li, D., Li, Q., Yue, M., Zhang, Y.E., Xu, Y., Xue, Y.,
. (2011b). Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation.
Plant Cell 23, 396-411 .
10.1105/tpc.110.081356