Generation of Calhm1 knockout mouse and characterization of calhm1 gene expression

Junbing Wu1,2, Shengyi Peng1,2, Rong Wu1,2, Yumin Hao1,2, Guangju Ji1, Zengqiang Yuan1()

PDF(768 KB)
PDF(768 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (6) : 470-480. DOI: 10.1007/s13238-012-2932-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Generation of Calhm1 knockout mouse and characterization of calhm1 gene expression

  • Junbing Wu1,2, Shengyi Peng1,2, Rong Wu1,2, Yumin Hao1,2, Guangju Ji1, Zengqiang Yuan1()
Author information +
History +

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease among elderly people worldwide. Several genes have been validated to be associated with AD, and calcium homeostasis modulator 1 (Calhm1) is the latest suspected one. To investigate the biological and pathological function of Calhm1 systematically, we generated a Calhm1 conventional knockout mouse. However, both the male and female of elderly Calhm1 knockout (KO) mice showed similar ability to their wild type littermates in spatial learning and memory retrieving. Surprisingly, we found that Calhm1 mRNA could not be detected in mouse brains at different ages, although it is expressed in the human brain tissues. We further found that CpG islands (CGIs) of both mouse and human Calhm1 were hypermethylated, whereas CGI of mouse Calhm2 was hypomethylated. In addition, transcriptional active marker H3K4Di occupied on promoters of human Calhm1 and mouse Calhm2 at a considerable level in brain tissues, while the occupancy of H3K4Di on promoter of mouse Calhm1 was rare. In sum, we found that mouse Calhm1 was of rare abundance in brain tissues. So it might not be suitable to utilize the knockout murine model to explore biological function of Calhm1 in the pathogenesis of AD.

Keywords

Alzheimer’s disease / calcium homeostasis modulator / methylation / transcription

Cite this article

Download citation ▾
Junbing Wu, Shengyi Peng, Rong Wu, Yumin Hao, Guangju Ji, Zengqiang Yuan. Generation of Calhm1 knockout mouse and characterization of calhm1 gene expression. Prot Cell, 2012, 3(6): 470‒480 https://doi.org/10.1007/s13238-012-2932-6

References

[1] Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., and Jones, E. (2011). Alzheimer's disease. Lancet 377, 1019-1031 .10.1016/S0140-6736(10)61349-9
[2] Beecham, G.W., SchnetzBoutaud, N., Haines, J.L., and PericakVance, M.A. (2009). CALHM1 polymorphism is not associated with late-onset Alzheimer disease. Ann Hum Genet 73, 379-381 .10.1111/j.1469-1809.2009.00509.x
[3] Bertram, L., Lill, C.M., and Tanzi, R.E. (2010). The genetics of Alzheimer disease: back to the future. Neuron 68, 270-281 .10.1016/j.neuron.2010.10.013
[4] Boada, M., Antunez, C., Lopez-Arrieta, J., Galan, J.J., Moron, F.J., Hernandez, I., Marin, J., Martinez-Lage, P., Alegret, M., Carrasco, J.M., . (2010). CALHM1 P86L polymorphism is associated with late-onset Alzheimer's disease in a recessive model. J Alzheimers Dis 20, 247-251 .
[5] Brandes, J.C., Carraway, H., and Herman, J.G. (2007). Optimal primer design using the novel primer design program: MSPprimer provides accurate methylation analysis of the ATM promoter. Oncogene 26, 6229-6237 .10.1038/sj.onc.1210433
[6] Coffee, B. (2009). Methylation-specific PCR. Curr Protoc Hum Genet Chapter 10, Unit 10 16.
[7] Cui, P.J., Zheng, L., Cao, L., Wang, Y., Deng, Y.L., Wang, G., Xu, W., Tang, H.D., Ma, J.F., Zhang, T., . (2010). CALHM1 P86L polymorphism is a risk factor for Alzheimer's disease in the Chinese population. J Alzheimers Dis 19, 31-35 .
[8] Deaton, A.M., and Bird, A. (2011). CpG islands and the regulation of transcription. Genes Dev 25, 1010-1022 .10.1101/gad.2037511
[9] Dreses-Werringloer, U., Lambert, J.C., Vingtdeux, V., Zhao, H., Vais, H., Siebert, A., Jain, A., Koppel, J., Rovelet-Lecrux, A., Hannequin, D., . (2008). A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer's disease risk. Cell 133, 1149-1161 .10.1016/j.cell.2008.05.048
[10] Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic acids research 30, 207-210 .10.1093/nar/30.1.207
[11] Farrer, L.A., Cupples, L.A., Haines, J.L., Hyman, B., Kukull, W.A., Mayeux, R., Myers, R.H., Pericak-Vance, M.A., Risch, N., and van Duijn, C.M. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278, 1349-1356 .10.1001/jama.1997.03550160069041
[12] Feng, R., Rampon, C., Tang, Y.P., Shrom, D., Jin, J., Kyin, M., Sopher, B., Miller, M.W., Ware, C.B., Martin, G.M., . (2001). Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32, 911-926 .10.1016/S0896-6273(01)00523-2
[13] Fuks, F. (2005). DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15, 490-495 .10.1016/j.gde.2005.08.002
[14] Giedraitis, V., Glaser, A., Sarajarvi, T., Brundin, R., Gunnarsson, M.D., Schjeide, B.M., Tanzi, R.E., Helisalmi, S., Pirttila, T., Kilander, L., . (2010). CALHM1 P86L polymorphism does not alter amyloid-beta or tau in cerebrospinal fluid. Neurosci Lett 469, 265-267 .10.1016/j.neulet.2009.12.011
[15] Goate, A., Chartier-Harlin, M.C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., . (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704-706 .10.1038/349704a0
[16] Harris, F.M., Brecht, W.J., Xu, Q., Tesseur, I., Kekonius, L., Wyss-Coray, T., Fish, J.D., Masliah, E., Hopkins, P.C., Scearce-Levie, K., . (2003). Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer's disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci U S A 100, 10966-10971 .10.1073/pnas.1434398100
[17] Inoue, K., Tanaka, N., Yamashita, F., Sawano, Y., Asada, T., and Goto, Y. (2010). The P86L common allele of CALHM1 does not influence risk for Alzheimer disease in Japanese cohorts. Am J Med Genet B Neuropsychiatr Genet 153B, 532-535 .
[18] Kunert-Keil, C., Bisping, F., Kruger, J., and Brinkmeier, H. (2006). Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7, 159.10.1186/1471-2164-7-159
[19] LaFerla, F.M. (2002). Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci 3, 862-872 .10.1038/nrn960
[20] Laird, C.D. (1971). Chromatid structure: relationship between DNA content and nucleotide sequence diversity. Chromosoma 32, 378-406 .10.1007/BF00285251
[21] Lambert, J.C., Sleegers, K., Gonzalez-Perez, A., Ingelsson, M., Beecham, G.W., Hiltunen, M., Combarros, O., Bullido, M.J., Brouwers, N., Bettens, K., . (2010). The CALHM1 P86L polymorphism is a genetic modifier of age at onset in Alzheimer's disease: a meta-analysis study. J Alzheimers Dis 22, 247-255 .
[22] Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D.M., Oshima, J., Pettingell, W.H., Yu, C.E., Jondro, P.D., Schmidt, S.D., Wang, K., . (1995). Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973-977 .10.1126/science.7638622
[23] Liu, P., Jenkins, N.A., and Copeland, N.G. (2003). A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13, 476-484 .10.1101/gr.749203
[24] Matevossian, A., and Akbarian, S. (2008). A chromatin assay for human brain tissue. J Vis Exp .
[25] Minster, R.L., Demirci, F.Y., DeKosky, S.T., and Kamboh, M.I. (2009). No association between CALHM1 variation and risk of Alzheimer disease. Hum Mutat 30, E566-569 .10.1002/humu.20989
[26] Moyer, B.D., Hevezi, P., Gao, N., Lu, M., Kalabat, D., Soto, H., Echeverri, F., Laita, B., Yeh, S.A., Zoller, M., . (2009). Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations. PLoS One 4, e7682.10.1371/journal.pone.0007682
[27] Nacmias, B., Tedde, A., Bagnoli, S., Lucenteforte, E., Cellini, E., Piaceri, I., Guarnieri, B.M., Bessi, V., Bracco, L., and Sorbi, S. (2010). Lack of implication for CALHM1 P86L common variation in Italian patients with early and late onset Alzheimer's disease. J Alzheimers Dis 20, 37-41 .
[28] Piedrahita, J.A., Zhang, S.H., Hagaman, J.R., Oliver, P.M., and Maeda, N. (1992). Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci U S A 89, 4471-4475 .10.1073/pnas.89.10.4471
[29] Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132, 365-386 .
[30] Sambrook, J., and Russell, D.W. (2001). Molecular cloning: a laboratory manual, Vol 2 (CSHL press).
[31] Saunders, A.M., Strittmatter, W.J., Schmechel, D., George-Hyslop, P.H., Pericak-Vance, M.A., Joo, S.H., Rosi, B.L., Gusella, J.F., Crapper-MacLachlan, D.R., Alberts, M.J., . (1993). Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43, 1467-1472 .10.1212/WNL.43.8.1467
[32] Shen, J., Bronson, R.T., Chen, D.F., Xia, W., Selkoe, D.J., and Tonegawa, S. (1997). Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89, 629-639 .10.1016/S0092-8674(00)80244-5
[33] Sherrington, R., Rogaev, E.I., Liang, Y., Rogaeva, E.A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., . (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754-760 .10.1038/375754a0
[34] Shibata, N., Kuerban, B., Komatsu, M., Ohnuma, T., Baba, H., and Arai, H. ( 2010). Genetic association between CALHM1, 2, and 3 polymorphisms and Alzheimer's disease in a Japanese population. J Alzheimers Dis 20, 417-421 .
[35] Sleegers, K., Brouwers, N., Bettens, K., Engelborghs, S., van Miegroet, H., De Deyn, P.P., and Van Broeckhoven, C. (2009). No association between CALHM1 and risk for Alzheimer dementia in a Belgian population. Hum Mutat 30, E570-574 .10.1002/humu.20990
[36] Tanzi, R.E. (1999). A genetic dichotomy model for the inheritance of Alzheimer's disease and common age-related disorders. J Clin Invest 104, 1175-1179 .10.1172/JCI8593
[37] Vorhees, C.V., and Williams, M.T. (2006). Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1, 848-858 .10.1038/nprot.2006.116
[38] Yu, H., Saura, C.A., Choi, S.Y., Sun, L.D., Yang, X., Handler, M., Kawarabayashi, T., Younkin, L., Fedeles, B., Wilson, M.A., . (2001). APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron 31, 713-726 .10.1016/S0896-6273(01)00417-2
[39] Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. (2000). A greedy algorithm for aligning DNA sequences. J Comput Biol 7, 203-214 .10.1089/10665270050081478
[40] Zheng, H., Jiang, M., Trumbauer, M.E., Sirinathsinghji, D.J., Hopkins, R., Smith, D.W., Heavens, R.P., Dawson, G.R., Boyce, S., Conner, M.W., . (1995). beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81, 525-531 .10.1016/0092-8674(95)90073-X
AI Summary AI Mindmap
PDF(768 KB)

Accesses

Citations

Detail

Sections
Recommended

/