Mitochondrial network in the heart

Qian Li, Lu-Yu Zhou, Gui-Feng Gao, Jian-Qin Jiao, Pei-Feng Li()

PDF(436 KB)
PDF(436 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (6) : 410-418. DOI: 10.1007/s13238-012-2921-9
REVIEW
REVIEW

Mitochondrial network in the heart

  • Qian Li, Lu-Yu Zhou, Gui-Feng Gao, Jian-Qin Jiao, Pei-Feng Li()
Author information +
History +

Abstract

Mitochondria are subcellular organelles that provide energy for the cell. They form a dynamic tubular network and play an important role in maintaining the cell function and integrity. Heart is a powerful organ that supplies the motivation for circulation, thereby requiring large amounts of energy. Thus, the healthiness of cardiomyocytes and mitochondria is necessary for the normal cardiac function. Mitochondria not only lie in the center of the cell apoptotic pathway, but also are the major source of reactive oxygen species (ROS) generation. Mitochondrial morphological change includes fission and fusion that are regulated by a large number of proteins. In this review we discuss the regulators of mitochondrial fission/fusion and their association with cell apoptosis, autophagy and ROS production in the heart.

Keywords

mitochondrial network / heart diseases / reactive oxygen species

Cite this article

Download citation ▾
Qian Li, Lu-Yu Zhou, Gui-Feng Gao, Jian-Qin Jiao, Pei-Feng Li. Mitochondrial network in the heart. Prot Cell, 2012, 3(6): 410‒418 https://doi.org/10.1007/s13238-012-2921-9

References

[1] Adams, J.M., and Cory, S. (2001). Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26, 61-66 .10.1016/S0968-0004(00)01740-0
[2] Aharinejad, S., Andrukhova, O., Lucas, T., Zuckermann, A., Wieselthaler, G., Wolner, E., and Grimm, M. (2008). Programmed cell death in idiopathic dilated cardiomyopathy is mediated by suppression of the apoptosis inhibitor Apollon. Ann Thorac Surg 86, 109-114 .10.1016/j.athoracsur.2008.03.057
[3] Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Tanaka, M., Shiojima, I., Hiroi, Y., and Yazaki,Y. (1997). Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest 100, 1813-1821 .10.1172/JCI119709
[4] Alirol,E., James, D., Huber, D., Marchetto, A., Vergani, L., Martinou, J.C., and Scorrano, L. (2006). The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol Biol Cell 17, 4593-4605 .10.1091/mbc.E06-05-0377
[5] Atlante, A., Calissano, P., Bobba, A., Azzariti, A., Marra, E., and Passarella, S. (2000). Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. Journal of Biological Chemistry 275, 37159-37166 .10.1074/jbc.M002361200
[6] Baines, C.P. (2010). The cardiac mitochondrion: nexus of stress. Annu Rev Physiol 72, 61-80 .10.1146/annurev-physiol-021909-135929
[7] Bianchi, P., Kunduzova, O., Masini, E., Cambon, C., Bani,D., Raimondi, L., Seguelas, M.H., Nistri, S., Colucci, W., and Leducq, N. (2005). Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation 112, 3297-3305 .10.1161/CIRCULATIONAHA.104.528133
[8] Brocheriou, V., Hagège, A.A., Oubena?ssa, A., Lambert, M., Mallet, V.O., Duriez, M., Wassef, M., Kahn, A., Menasché, P., and Gilgenkrantz, H. (2000). Cardiac functional improvement by a human Bcl‐2 transgene in a mouse model of ischemia/reperfusion injury. J Gene Med 2, 326-333 .10.1002/1521-2254(200009/10)2:5<326::AID-JGM133>3.0.CO;2-1
[9] Bryant,D., Becker, L., Richardson, J., Shelton, J., Franco, F., Peshock, R., Thompson, M., and Giroir, B. (1998). Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-α. Circulation 97, 1375-1381 .10.1161/01.CIR.97.14.1375
[10] Casademont, J., and Miró, ò. (2002). Electron transport chain defects in heart failure. Heart Fail Rev 7, 131-139 .10.1023/A:1015372407647
[11] Cereghetti, G., Costa, V., and Scorrano, L. (2010). Inhibition of Drp1-dependent mitochondrial fragmentation and apoptosis by a polypeptide antagonist of calcineurin. Cell Death Differ 17, 1785-1794 .10.1038/cdd.2010.61
[12] Chen, H., and Chan D.C. (2004). Mitochondrial dynamics in mammals. Curr Top Dev Biol 59, 119-144 .10.1016/S0070-2153(04)59005-1
[13] Chen, L., Gong, Q., Stice, J.P., and Knowlton, A.A. (2009). Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res 84, 91-99 .10.1093/cvr/cvp181
[14] Chen, Q., Moghaddas, S., Hoppel, C.L., and Lesnefsky, E.J. (2008). Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol 294, C460-C466 .10.1152/ajpcell.00211.2007
[15] Chen, Z., Chua, C.C., Ho, Y.S., Hamdy, R.C., and Chua, B.H.L. (2001). Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Cell Physiol 280, H2313-H2320 .
[16] Chu, C.T. (2010). Tickled PINK1: mitochondrial homeostasis and autophagy in recessive Parkinsonism. Biochim Biophys Acta 1802, 20-28 .
[17] Chua, C.C., Gao, J., Ho, Y.S., Xu, X., Kuo, I., Chua, K.Y., Wang, H., Hamdy,R.C., Reed, J.C., and Chua, B.H.L. (2009). Over-expression of a modified bifunctional apoptosis regulator protects against cardiac injury and doxorubicin-induced cardiotoxicity in transgenic mice. Cardiovasc Res 81, 20-27 .10.1093/cvr/cvn257
[18] Cipolat, S., Martins de Brito, O., Dal Zilio, B. & Scorrano, L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101, 15927-15932 .10.1073/pnas.0407043101
[19] Cribbs, J.T., and Strack, S. (2007). Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8, 939-944 .10.1038/sj.embor.7401062
[20] Detmer S.A., and Chan, D. (2007). Functions and dysfunctions of mitochondrial dynamics. Mol Cell Biol 8, 870-879 .
[21] Dhalla, N.S., Temsah, R.M., and Netticadan, T. (2000). Role of oxidative stress in cardiovascular diseases. J Hypertens 18, 655-673 .10.1097/00004872-200018060-00002
[22] Diwan, A., Wansapura, J., Syed, F.M., Matkovich, S.J., Lorenz, J.N., and Dorn, G.W. (2008). Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation 117, 396-404 .10.1161/CIRCULATIONAHA.107.727073
[23] Donath, S., Li, P., Willenbockel, C., Al-Saadi, N., Gross, V., Willnow,T., Bader, M., Martin, U., Bauersachs, J., and Wollert, K.C. (2006). Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation 113, 1203-1212 .10.1161/CIRCULATIONAHA.105.576785
[24] Eura, Y., Ishihara, N., Yokota, S., and Mihara, K. (2003). Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem 134, 333-344 .10.1093/jb/mvg150
[25] Ferrari, L.F., Chum, A., Bogen, O., Reichling, D.B., and Levine, J.D. (2011). Role of Drp1, a key mitochondrial fission protein, in neuropathic pain. J Neurosci 31, 11404-11410 .10.1523/JNEUROSCI.2223-11.2011
[26] Finck, B.N., and Kelly, D.P. (2007). Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 115, 2540-2548 .10.1161/CIRCULATIONAHA.107.670588
[27] Frank, S., Gaume, B., Bergmann-Leitner, E.S., Leitner, W.W., Robert, E.G., Catez, F., Smith, C.L., and Youle, R.J. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1, 515-525 .10.1016/S1534-5807(01)00055-7
[28] Gürtl, B., Kratky, D., Guelly, C., Zhang, L., Gorkiewicz, G., Das, S.K., Tamilarasan, K.P., and Hoefler, G. (2009). Apoptosis and fibrosis are early features of heart failure in an animal model of metabolic cardiomyopathy. Int J Exp Pathol 90, 338-346 .10.1111/j.1365-2613.2009.00647.x
[29] Gao, H.K., Yin, Z., Zhou, N., Feng, X.Y., Gao, F., and Wang, H.C. (2008). Glycogen synthase kinase 3 inhibition protects the heart from acute ischemia-reperfusion injury via inhibition of inflammation and apoptosis. J Cardiovasc Pharmacol 52, 286.10.1097/FJC.0b013e318186a84d
[30] Geisler, S., Holmstr?m, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J., and Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12, 119-131 .10.1038/ncb2012
[31] Giedt, R.J., Yang, C., Zweier, J.L., Matzavinos, A., and Alevriadou, B.R. (2012). Mitochondrial fission in endothelial cells after simulated ischemia/reperfusion: role of nitric oxide and reactive oxygen species. Free Radic Biol Med 52, 348-356 .10.1016/j.freeradbiomed.2011.10.491
[32] Gomes, L.C., and Scorrano, L. (2008). High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta 1777, 860-866 .10.1016/j.bbabio.2008.05.442
[33] Graiani, G., Lagrasta, C., Migliaccio, E., Spillmann, F., Meloni, M., Madeddu, P., Quaini, F., Padura, I.M., Lanfrancone, L., and Pelicci, P.G. (2005). Genetic deletion of the p66Shc adaptor protein protects from angiotensin II-induced myocardial damage. Hypertension 46, 433-440 .10.1161/01.HYP.0000174986.73346.ba
[34] Griparic L., van der Wel N.N., Orozco I.J., Peters P.J., and van der Bliek A.M. (2004). Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 279, 18792-18798 .10.1074/jbc.M400920200
[35] Gustafsson, ?.B., and Gottlieb, R.A. (2008). Heart mitochondria: gates of life and death. Cardiovasc Res 77, 334.10.1093/cvr/cvm005
[36] Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P.K., and Lippincott-Schwartz, J. (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656-667 .10.1016/j.cell.2010.04.009
[37] Hausladen, A., and Fridovich, I. (1994). Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269, 29405-29408 .
[38] Hom, J., and Sheu, S.S. (2009). Morphological dynamics of mitochondria--a special emphasis on cardiac muscle cells. J Mol Cell Cardiol 46, 811-820 .10.1016/j.yjmcc.2009.02.023
[39] Hom, J., Yu, T., Yoon, Y., Porter, G., and Sheu, S.S. (2010). Regulation of mitochondrial fission by intracellular Ca2+ in rat ventricular myocytes. Biochim Biophys Acta 1797, 913-921 .10.1016/j.bbabio.2010.03.018
[40] Hoppela C. L., Tandlerb B., Fujiokac H., and Rivad A. (2009). Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol 41, 1949-1956 .10.1016/j.biocel.2009.05.004
[41] Huss, J.M., and Kelly, D.P. (2005). Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115, 547-555 .
[42] Hyde, B.B., Twig, G., and Shirihai, O.S. (2010). Organellar vs cellular control of mitochondrial dynamics. Semin Cell Dev Biol 21, 575-581 .10.1016/j.semcdb.2010.01.003
[43] Imahashi, K., Schneider, M.D., Steenbergen, C., and Murphy, E. (2004). Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circ Res 95, 734-741 .10.1161/01.RES.0000143898.67182.4c
[44] Ingraham, C.A., Burwell, L.S., Skalska, J., Brookes, P.S., Howell, R.L., Sheu, S.S., and Pinkert, C.A. (2009). NDUFS4: creation of a mouse model mimicking a Complex I disorder. Mitochondrion 9, 204-210 .10.1016/j.mito.2009.02.001
[45] Jofuku, A., Ishihara, N., and Mihara, K. (2005). Analysis of functional domains of rat mitochondrial Fis1, the mitochondrial fission-stimulating protein. Biochem Biophys Res Commun 333, 650-659 .10.1016/j.bbrc.2005.05.154
[46] Johnson, D., Allman, E., and Nehrke, K. (2012). Regulation of acid-base transporters by reactive oxygen species following mitochondrial fragmentation. Am J Physiol Cell Physiol , 302C1045-C1054 .10.1152/ajpcell.00411.2011
[47] Karbowski, M. (2010). Mitochondria on guard: role of mitochondrial fusion and fission in the regulation of apoptosis BCL-2 protein family. In, C. Hetz, ed. (Springer New York) , pp. 131-142 .
[48] Kim, I., Rodriguez-Enriquez, S. and Lemasters, J.J. (2007). Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 245-253 .10.1016/j.abb.2007.03.034
[49] Kim, J.S., Jin, Y., and Lemasters, J.J. (2006). Reactive oxygen species, but not Ca2+ overloading, trigger pH-and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 290, H2024-H2034 .10.1152/ajpheart.00683.2005
[50] Kobashigawa, S., Suzuki, K., and Yamashita, S. (2011). Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells. Biochem Biophys Res Commun 414, 795-800 .10.1016/j.bbrc.2011.10.006
[51] Kroemer, G., Galluzzi, L., and Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol Rev 87, 99-163 .10.1152/physrev.00013.2006
[52] Kundu, M., Lindsten, T., Yang, C.Y., Wu, J., Zhao, F., Zhang, J., Selak, M.A., Ney, P.A., and Thompson, C.B. (2008). Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493-1502 .10.1182/blood-2008-02-137398
[53] Lee, Y., Jeong, S.Y., Karbowski, M., Smith, C.L., and Youle, R.J. (2004). Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15, 5001-5011 .10.1091/mbc.E04-04-0294
[54] Lee, Y., Lee, H.Y., Hanna, R.A., and Gustafsson, ?.B. (2011). Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol 301, H1924-H1931 .10.1152/ajpheart.00368.2011
[55] Legros, F., Lombès, A., Frachon, P., and Rojo, M. (2002). Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins,. Mol Biol Cell 13 , 4343-4354 .10.1091/mbc.E02-06-0330
[56] Lehman, J.J., Barger, P.M., Kovacs, A., Saffitz, J.E., Medeiros, D.M., and Kelly, D.P. (2000). Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106, 847-856 .10.1172/JCI10268
[57] Li, J., Donath, S., Li, Y., Qin, D., Prabhakar, B.S., and Li, P. (2010). miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 6, e1000795.10.1371/journal.pgen.1000795
[58] Li, P.F., Li, J., Muller, E.C., Otto, A., Dietz, R., and von Harsdorf, R. (2002). Phosphorylation by protein kinase CK2: a signaling switch for the caspase-inhibiting protein ARC. Mol Cell 10, 247-258 .10.1016/S1097-2765(02)00600-7
[59] Lin, K.M., Lin, B., Lian, I.Y., Mestril, R., Scheffler, I.E., and Dillmann, W.H. (2001). Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 103, 1787-1792 .10.1161/01.CIR.103.13.1787
[60] Mai, S., Klinkenberg, M., Auburger, G., Bereiter-Hahn, J., and Jendrach, M. (2010). Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J Cell Sci 123, 917-926 .10.1242/jcs.059246
[61] Mai, S., Muster, B., Bereiter-Hahn, J., and Jendrach, M. (2012). Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 8, 47-62 .10.4161/auto.8.1.18174
[62] Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., Asano, T., Levine, B., and Sadoshima, J. (2007). Distinct roles of autophagy in the heart during ischemia and reperfusion. Circ Res 100, 914-922 .10.1161/01.RES.0000261924.76669.36
[63] Mayor, F., and Cuezva, J.M. (1985). Hormonal and metabolic changes in the perinatal period. Biol Neonate 48, 185-196 .10.1159/000242171
[64] McCully, J.D., Wakiyama, H., Hsieh, Y.J., Jones, M., and Levitsky, S. (2004). Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 286, H1923-H1935 .10.1152/ajpheart.00935.2003
[65] Mei, Y., Zhang, Y., Yamamoto, K., Xie, W., Mak, T.W., and You, H. (2009). FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation. Proc Natl Acad Sci U S A 106, 5153-5158 .10.1073/pnas.0901104106
[66] Meeusen, S., McCaffery, J.M., and Nunnari, J. (2004). Mitochondrial fusion intermediates revealed in vitro. Science 305, 1747-1752 .10.1126/science.1100612
[67] Misao, J., Hayakawa, Y., Ohno, M., Kato, S., Fujiwara, T., and Fujiwara, H. (1996). Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94, 1506-1512 .10.1161/01.CIR.94.7.1506
[68] Mizushima, N., Levine, B., Cuervo, A.M., and Klionsky D.J. (2008). Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075 .10.1038/nature06639
[69] Mortensen, M., Ferguson, D.J., Edelmann, M., Kessler, B., Morten, K.J., Komatsu, M., and Simon, A.K. (2010). Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci U S A 107, 832-837 .10.1073/pnas.0913170107
[70] Mouli P.K., Twig, G., and Shirihai, O.S. (2009). Frequency and selectivity of mitochondrial fusion are key to its quality maintenance function. Biophys J 96, 3509-3518 .10.1016/j.bpj.2008.12.3959
[71] Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., Omiya, S., Mizote, I., Matsumura, Y., Asahi M., . (2007). The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13, 619-624 .10.1038/nm1574
[72] Olivetti, G., Quaini, F., Sala, R., Lagrasta, C., Corradi, D., Bonacina, E., Gambert, S.R., Cigola, E., and Anversa, P. (1996). Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 28, 2005-2016 .10.1006/jmcc.1996.0193
[73] Ong, S.B., Subrayan, S., Lim, S.Y., Yellon, D.M., Davidson, S.M., and Hausenloy, D.J. (2010). Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121, 2012-2022 .10.1161/CIRCULATIONAHA.109.906610
[74] Papanicolaou, K.N., Ngoh, G.A., Dabkowski, E.R., O'Connell, K.A., Ribeiro, R.F., Jr., Stanley, W.C., and Walsh, K. (2012). Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. Am J Physiol Heart Circ Physiol 302, H167-H179 .10.1152/ajpheart.00833.2011
[75] Parra, V., Eisner, V., Chiong, M., Criollo, A., Moraga, F., Garcia, A., H?rtel, S., Jaimovich, E., Zorzano, A., and Hidalgo, C. (2008). Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovas Rev 77, 387-397 .10.1093/cvr/cvm029
[76] Rodrigues, R.M., Macko, P., Palosaari, T., and Whelan, M.P. (2011). Autofluorescence microscopy: a non-destructive tool to monitor mitochondrial toxicity. Toxicol Lett 206, 281-288 .10.1016/j.toxlet.2011.06.025
[77] Schaper, J., Froede, R., Hein, S., Buck, A., Hashizume, H., Speiser, B., Friedl, A., and Bleese, N. (1991). Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83, 504-514 .10.1161/01.CIR.83.2.504
[78] Schmidt, S.P., Corydon, T.J., Pedersen, C.B., Bross, P., and Gregersen, N. (2010). Misfolding of short-chain acyl-CoA dehydrogenase leads to mitochondrial fission and oxidative stress. Mol Genet Metab 100, 155-162 .10.1016/j.ymgme.2010.03.009
[79] Schweers, R.L., Zhang, J., Randall, M.S., Loyd, M.R., Li, W., Dorsey, F.C., Kundu, M., Opferman, J.T., Cleveland, J.L., Miller, J.L., . (2007). NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A 104 , 19500-19505 .10.1073/pnas.0708818104
[80] Skulachev, V.P., Bakeeva, L.E., Chernyak, B.V., Domnina, L.V., Minin, A.A., Pletjushkina, O.Y., Saprunova, V.B., Skulachev, I.V., Tsyplenkova, V.G., and Vasiliev, J.M. (2004). Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis. Mol Cell Biochem 256, 341-358 .10.1023/B:MCBI.0000009880.94044.49
[81] Stojanovski D., Koutsopoulos O.S., Okamoto K., and Ryan M.T. (2004). Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 117, 1201-1210 .10.1242/jcs.01058
[82] Suematsu, N., Tsutsui, H., Wen, J., Kang, D., Ikeuchi, M., Ide, T., Hayashidani, S., Shiomi, T., Kubota, T., and Hamasaki, N. (2003). Oxidative stress mediates tumor necrosis factor-α-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107, 1418-1423 .10.1161/01.CIR.0000055318.09997.1F
[83] Tian, C., Murrin, L.C., and Zheng, J.C. (2009). Mitochondrial fragmentation is involved in methamphetamine-induced cell death in rat hippocampal neural progenitor cells. PLoS One 4, e5546.10.1371/journal.pone.0005546
[84] Tolkovsky, A.M., Xue, L., Fletcher, G.C., and Borutaite, V. (2002). Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? Biochimie 84, 233-240 .10.1016/S0300-9084(02)01371-8
[85] Twig G., Elorza A., Molina A.J., Mohamed H., Wikstrom J.D., Walzer G., Stiles L., Haigh S.E., Katz S., Las G., . (2008a). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27, 433-446 .10.1038/sj.emboj.7601963
[86] Twig G., Hyde B., Shirihai O.S., (2008b). Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777, 1092-1097 .10.1016/j.bbabio.2008.05.001
[87] Vanlangenakker, N., Berghe, T.V., Krysko, D.V., Festjens, N., and Vandenabeele, P. (2008). Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 8, 207-220 .10.2174/156652408784221306
[88] von Harsdorf, R., Li, P.F., and Dietz, R. (1999). Signaling pathways in reactive oxygen species–induced cardiomyocyte apoptosis. Circulation 99, 2934-2941 .10.1161/01.CIR.99.22.2934
[89] Wang, J.X., Jiao, J.Q., Li, Q., Long, B., Wang, K., Liu, J.P., Li, Y.R., and Li, P.F. (2011a). miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17, 71-78 .10.1038/nm.2282
[90] Wang, J.X., Jiao, J.Q., Li, Q., Long, B., Wang, K., Liu, J.P., Li, Y.R., and Li, P.F. (2011b). miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17, 71-78 .10.1038/nm.2282
[91] White, K.E., Davies, V.J., Hogan, V.E., Piechota, M.J., Nichols, P.P., Turnbull, D.M., and Votruba, M. (2009). OPA1 deficiency associated with increased autophagy in retinal ganglion cells in a murine model of dominant optic atrophy. Invest Ophthalmol Vis Sci 50, 2567.10.1167/iovs.08-2913
[92] Wood-Kaczmar, A., Gandhi, S., Yao, Z., Abramov, A.S.Y., Miljan, E.A., Keen, G., Stanyer, L., Hargreaves, I., Klupsch, K., and Deas, E. (2008). PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS One 3, e2455.10.1371/journal.pone.0002455
[93] Yang, Y., Ouyang, Y., Yang, L., Beal, M.F., McQuibban, A., Vogel, H., and Lu, B. (2008). Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A 105, 7070-7075 .10.1073/pnas.0711845105
[94] Yang Z, and Klionsky D.J. (2010). Eaten alive: a history of macroautophagy. Nature Cell Biol 12, 814-822 .10.1038/ncb0910-814
[95] Ytrehus, K., Myklebust, R., Olsen, R., and Mjos, O.D. (1987). Ultrastructural changes induced in the isolated rat heart by enzymatically generated oxygen radicals. J Mol Cell Cardiol 19, 379-389 .10.1016/S0022-2828(87)80583-7
[96] Yussman, M.G., Toyokawa, T., Odley, A., Lynch, R.A., Wu, G., Colbert, M.C., Aronow, B.J., Lorenz, J.N., and Dorn, G.W. (2002). Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med 8, 725-730 .
[97] Zhang, H., Kong, X., Kang, J., Su, J., Li, Y., Zhong, J., and Sun, L. (2009). Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol Sci 110, 376-388 .10.1093/toxsci/kfp101
[98] Zhao, Z.Q., Nakamura, M., Wang, N.P., Wilcox, J.N., Shearer, S., Ronson, R.S., Guyton, R.A., and Vinten-Johansen, J. (2000). Reperfusion induces myocardial apoptotic cell death. Cardiovasc Res 45, 651-660 .10.1016/S0008-6363(99)00354-5
[99] Zhu, H., Tannous, P., Johnstone, J.L., Kong, Y., Shelton, J.M., Richardson, J.A., Le, V., Levine, B., Rothermel, B.A., and Hill, J.A. (2007). Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 117, 1782-1793 .10.1172/JCI27523
[100] Zorov, D.B., Filburn, C.R., Klotz, L.O., Zweier, J.L., and Sollott, S.J. (2000). Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192, 1001-1014 .10.1084/jem.192.7.1001
AI Summary AI Mindmap
PDF(436 KB)

Accesses

Citations

Detail

Sections
Recommended

/