Expression regulation and function of NLRC5

Yikun Yao, Youcun Qian()

PDF(389 KB)
PDF(389 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (3) : 168-175. DOI: 10.1007/s13238-012-2109-3
REVIEW
REVIEW

Expression regulation and function of NLRC5

  • Yikun Yao, Youcun Qian()
Author information +
History +

Abstract

The NOD like receptors (NLRs), a class of intracellular receptors that respond to pathogen attack or cellular stress, have gained increasing attention. NLRC5, the largest member of the NLR protein family, has recently been identified as a critical regulator of immune responses. While NLRC5 is constitutively and widely expressed, it can be dramatically induced by interferons during pathogen infections. Both in vitro and in vivo studies have demonstrated that NLRC5 is a specifi c and master regulator of major mistocompatibility complex (MHC) class I genes as well as related genes involved in MHC class I antigen presentation. The expression of MHC class I genes is regulated by NLRC5 in coordination with the RFX components through an enhanceosome-dependent manner. And the involvement of NLRC5 in MHC class I mediated CD8+ T cell activation, proliferation and cytotoxicity is proved to be critical for host defense against intracellular bacterial infections. Nevertheless, the role of NLRC5 in innate immunity remains to be further explored. Here, we review the research advances on the structure, expression regulation and function of NLRC5.

Keywords

NLR / NLRC5 / MHC Class I

Cite this article

Download citation ▾
Yikun Yao, Youcun Qian. Expression regulation and function of NLRC5. Prot Cell, 2013, 4(3): 168‒175 https://doi.org/10.1007/s13238-012-2109-3

References

[1] Allen, I.C., Wilson, J.E., Schneider, M., Lich, J.D., Roberts, R.A., Arthur, J.C., Woodford, R.M., Davis, B.K., Uronis, J.M., Herfarth, H.H., . (2012). NLRP12 suppresses colon infl ammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 36, 742-754 .10.1016/j.immuni.2012.03.012
[2] Anand, P.K., Malireddi, R.K., Lukens, J.R., Vogel, P., Bertin, J., Lamkanfi, M., and Kanneganti, T.D. (2012). NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488, 389-393 .10.1038/nature11250
[3] Benko, S., Magalhaes, J.G., Philpott, D.J., and Girardin, S.E. (2010). NLRC5 limits the activation of infl ammatory pathways. J Immunol 185, 1681-1691 .10.4049/jimmunol.0903900
[4] Biswas, A., Meissner, T.B., Kawai, T., and Kobayashi, K.S. (2012). Cutting edge: impaired MHC class I expression in mice deficient for nlrc5/class I transactivator. Immunol 189, 516-520 .10.4049/jimmunol.1200064
[5] Camacho-Carvajal, M.M. , Klingler, S., Schnappauf, F., Hake, S.B., and Steimle, V. (2004). Importance of class II transactivator leucinerich repeats for dominant-negative function and nucleo-cytoplasmic transport. Int Immunol 16, 65-75 .10.1093/intimm/dxh010
[6] Chang, C.H., Guerder, S., Hong, S.C., van Ewijk, W., and Flavell, R.A. (1996). Mice lacking the MHC class II transactivator (CIITA) show tissue-specifi c impairment of MHC class II expression. Immunity 4, 167-178 .10.1016/S1074-7613(00)80681-0
[7] Cui, J., Li, Y., Zhu, L., Liu, D., Songyang, Z., Wang, H.Y., and Wang, R.F. (2012). NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat Immunol 13, 387-395 .10.1038/ni.2239
[8] Cui, J., Zhu, L., Xia, X., Wang, H.Y., Legras, X., Hong, J., Ji, J., Shen, P., Zheng, S., Chen, Z.J., . (2010). NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141, 483-496 .10.1016/j.cell.2010.03.040
[9] Davis, B.K., Roberts, R.A., Huang, M.T., Willingham, S.B., Conti, B.J., Brickey, W.J., Barker, B.R., Kwan, M., Taxman, D.J., Accavitti-Loper, M.A., . (2011). Cutting Edge: NLRC5-Dependent Activation of the Infl ammasome. J Immunol 186, 1333-1337 .10.4049/jimmunol.1003111
[10] Eisenbarth, S.C., Will iams, A., Colegio, O.R., Meng, H., Strowig, T., Rongvaux, A., Henao-Mejia, J., Thaiss, C.A., Joly, S., Gonzalez, D.G., . (2012). NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 484, 510-513 .10.1038/nature11012
[11] Elinav, E., Strowig, T., Kau, A.L., Henao-Mejia, J., Thaiss, C.A., Booth, C.J., Peaper, D.R., Bertin, J., Eisenbarth, S.C., Gordon, J.I., . (2011). NLRP6 infl ammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745-757 .10.1016/j.cell.2011.04.022
[12] Gong, Y.N., and Shao, F. (2012). Sensing bacterial infections by NAIP receptors in NLRC4 inflammasome activation. Protein Cell 3, 98-105 .10.1007/s13238-012-2028-3
[13] Hake, S.B., Masternak, K., Kammerbauer, C., Janzen, C., Reith, W., and Steimle, V. (2000). CIITA leucine-rich repeats control nuclear localization, in vivo recruitment to the major histocompatibility complex (MHC) class II enhanceosome, and MHC class II gene transactivation. Mol Cell Biol 20, 7716-7725 .10.1128/MCB.20.20.7716-7725.2000
[14] Jabrane-Ferrat, N., Ne krep, N., Tosi, G., Esserman, L., and Peterlin, B.M. (2003). MHC class II enhanceosome: how is the class II transactivator recruited to DNA-bound activators. Int Immunol 15, 467-475 .10.1093/intimm/dxg048
[15] Jiang, H., and Chess, L. (2000). The specifi c regulation of immune responses by CD8+ T cells restricted by the MHC class IB molecule, QA-1. Annu Rev Immunol 18, 185-216 .10.1146/annurev.immunol.18.1.185
[16] Jounai, N., Kobiyama, K., Shiina, M., Ogata, K., Ishii, K.J., and Takeshita, F. (2011). NLRP4 negatively regulates autophagic processes through an association with beclin1. J Immunol 186, 1646-1655 .10.4049/jimmunol.1001654
[17] Khare, S., Dorfleutner, A., Bryan, N.B., Yun, C., Radian, A.D., de Almeida, L., Rojanasakul, Y., and Stehlik, C. (2012). An NLRP7- containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36, 464-476 .10.1016/j.immuni.2012.02.001
[18] Kobayashi, K.S., and v an den Elsen, P.J. (2012). NLRC5: a key regulator of MHC class I-dependent immune responses. Nat Rev Immunol 12, 813-820 .10.1038/nri3339
[19] Kuenzel, S., Till, A., Winkler, M., Hasler, R., Lipinski, S., Jung, S., Grotzinger, J., Fickenscher, H., Schreiber, S., and Rosenstiel, P. (2010). The nucleotide-binding oligomerization domain-like receptor NLRC5 is involved in IFN-dependent antiviral immune responses. Immunol 184, 1990-2000 .10.4049/jimmunol.0900557
[20] Kumar, H., Pandey, S., Zou, J., Kumagai, Y., Takahashi, K., Akira, S., and Kawai, T. (2011). NLRC5 deficiency does not influence cytokine induction by virus and bacteria infections. Immunol 186, 994-1000 .10.4049/jimmunol.1002094
[21] Lamkanfi, M., and Kann eganti, T.D. (2012). Regulation of immune pathways by the NOD-like receptor NLRC5. Immunobiology 217, 13-16 .10.1016/j.imbio.2011.08.011
[22] LeibundGut-Landmann, S., Waldburger, J.M., Krawczyk, M., Otten, L.A., Suter, T., Fontana, A., Acha-Orbea, H., and Reith, W. (2004). Mini-review: specifi city and expression of CIITA, the master regulator of MHC class II genes. Eur J Immunol 34, 1513-1525 .10.1002/eji.200424964
[23] Levinsohn, J.L., Newman, Z.L., Hellmich, K.A., Fattah, R., Getz, M.A., Liu, S., Sastalla, I., Leppla, S.H., and Moayeri, M. (2012). Anthrax lethal factor cleavage of Nlrp1 is required for activation of the infl ammasome. PLoS Pathog 8, e1002638.10.1371/journal.ppat.1002638
[24] Lie, B.A., and Thorsby, E. (2005). Several genes in the extended human MHC contribute to predisposition to autoimmune diseases. Curr Opin Immunol 17, 526-531 .10.1016/j.coi.2005.07.001
[25] Martin, B.K., Chin, K. C., Olsen, J.C., Skinner, C.A., Dey, A., Ozato, K., and Ting, J.P.Y. (1997). Induction of MHC class I expression by the MHC class II transactivator CIITA. Immunity 6, 591-600 .10.1016/S1074-7613(00)80347-7
[26] Martinon, F., Mayor, A., and Tschopp, J. (2009). The infl ammasomes: guardians of the body. Annu Rev Immunol 27, 229-265 .10.1146/annurev.immunol.021908.132715
[27] Masternak, K., and Reith, W. (2002). Promoter-specifi c functions of CIITA and the MHC class II enhanceosome in transcriptional activation. Embo Journal 21, 1379-1388 .10.1093/emboj/21.6.1379
[28] Meissner, T.B., Li, A. , Biswas, A., Lee, K.H., Liu, Y.J., Bayir, E., Iliopoulos, D., van den Elsen, P.J., and Kobayashi, K.S. (2010). NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci U S A 107, 13794-13799 .10.1073/pnas.1008684107
[29] Meissner, T.B., Li, A. , Liu, Y.J., Gagnon, E., and Kobayashi, K.S. (2012a). The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity. Biochem Biophys Res Commun 418, 786-791 .10.1016/j.bbrc.2012.01.104
[30] Meissner, T.B., Liu, Y.J., Lee, K.H., Li, A., Biswas, A., van Eggermond, M.C., van den Elsen, P.J., and Kobayashi, K.S. (2012b). NLRC5 cooperates with the RFX transcription factor complex to induce MHC class I gene expression. J Immunol 188, 4951-4958 .10.4049/jimmunol.1103160
[31] Moreno, C.S., Beresford, G.W., Louis-Plence, P., Morris, A.C., and Boss, J.M. (1999). CREB regulates MHC class II expression in a CIITA-dependent manner. Immunity 10, 143-151 .10.1016/S1074-7613(00)80015-1
[32] Neerincx, A., Lautz, K., Menning, M., Kremmer, E., Zigrino, P., Hosel, M., Buning, H., Schwarzenbacher, R., and Kufer, T.A. (2010). A role for the human NLR family member NLRC5 in antiviral responses. J Biol Chem 285, 26223-26232 .10.1074/jbc.M110.109736
[33] Neerincx, A., Rodriguez, G.M., Steimle, V., and Kufer, T.A. (2012). NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner. Immunol 188, 4940-4950 .10.4049/jimmunol.1103136
[34] Pamer, E., and Cresswell, P. (1998). Mechanisms of MHC class I- Restricted antigen processing. Ann Rev Immunol 16, 323-358 .10.1146/annurev.immunol.16.1.323
[35] Peaper, D.R., and Cresswell, P. (2008). Regulation of MHC Class I Assembly and Peptide Binding. Annu Rev Cell Dev Bi 24, 343-368 .10.1146/annurev.cellbio.24.110707.175347
[36] Robbins, G.R., Truax, A.D., Davis, B.K., Zhang, L., Brickey, W.J., and Ting, J.P. (2012). Regulation of class I major histocompatibility complex (MHC) by nucleotide-binding domain, leucine-rich repeat containing (NLR) proteins. J Biol Chem 287, 24294-24303 .10.1074/jbc.M112.364604
[37] Savage, P.A., Boniface, J.J., and Davis, M.M. (1999). A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485-492 .10.1016/S1074-7613(00)80048-5
[38] Schneider, M., Zimmermann, A.G., Roberts, R.A., Zhang, L., Swanson, K.V., Wen, H., Davis, B.K., Allen, I.C., Holl, E.K., Ye, Z., . (2012). The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modifi cation of the signaling adaptor TRAF6 and transcription factor NF-kappaB. Nat Immunol 13, 823-831 .10.1038/ni.2378
[39] Schroder, K., and Tsch opp, J. (2010). The infl ammasomes. Cell 140, 821-832 .10.1016/j.cell.2010.01.040
[40] Shepherd, J.C., Schumacher, T.N.M., Ashtonrickardt, P.G., Imaeda, S., Ploegh, H.L., Janeway, C.A., and Tonegawa, S. (1993). Tap1- Dependent Peptide Translocation in-Vitro Is Atp-Dependent and Peptide Selective. Cell 74, 577-584 .10.1016/0092-8674(93)80058-M
[41] Staehli, F., Ludigs, K., Heinz, L.X., Seguin-Estevez, Q., Ferrero, I., Braun, M., Schroder, K., Rebsamen, M., Tardivel, A., Mattmann, C., . (2012). NLRC5 defi ciency selectively impairs MHC class I- dependent lymphocyte killing by cytotoxic T cells. Immunol 188, 3820-3828 .10.4049/jimmunol.1102671
[42] Strober, W., Murray, P.J., Kitani, A., and Watanabe, T. (2006). Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6, 9-20 .10.1038/nri1747
[43] Tong, Y., Cui, J., Li, Q., Zou, J., Wang, H.Y., and Wang, R.F. (2012). Enhanced TLR-induced NF-kappaB signaling and type I interferon responses in NLRC5 defi cient mice. Cell Res 22, 822-835 .10.1038/cr.2012.53
[44] Tschopp, J., and Schroder, K. (2010). NLRP3 infl ammasome activa tion: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10, 210-215 .10.1038/nri2725
[45] Vesely, M.D., Kershaw, M.H., Schreiber, R.D., and Smyth, M.J. (2011). Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29, 235-271 .10.1146/annurev-immunol-031210-101324
[46] Vladimer, G.I., Weng, D., Paquette, S.W., Vanaja, S.K., Rathinam, V.A., Aune, M.H., Conlon, J.E., Burbage, J.J., Proulx, M.K., Liu, Q., . (2012). The NLRP12 Infl ammasome Recognizes Yersinia pestis. Immunity 37, 96-107 .10.1016/j.immuni.2012.07.006
[47] Williams, G.S., Malin, M., Vremec, D., Chang, C.H., Boyd, R., Benoist, C., and Mathis, D. (1998). Mice lacking the transcription factor CIITA--a second look. Int Immunol 10, 1957-1967 .10.1093/intimm/10.12.1957
[48] Williams, K.L., Taxman, D.J., Linhoff, M.W., Reed, W., and Ting, J.P.Y. (2003). Cutting edge: Monarch-1: A pyrin/nucleotide-binding domain/leucine-rich repeat protein that controls classical and nonclassical MHC class I genes. Journal of Immunology 170, 5354-5358 .
[49] Yao, Y., Wang, Y., Chen, F., Huang, Y., Zhu, S., Leng, Q., Wang, H., Shi, Y., and Qian, Y. (2012). NLRC5 regulates MHC class I antigen presentation in host defense against intracellular pathogens. Cell Res 22, 836-847 .10.1038/cr.2012.56
[50] Zaki, M.H., Vogel, P., Malireddi, R.K., Body-Malapel, M., Anand, P.K., Bertin, J., Green, D.R., Lamkanfi, M., and Kanneganti, T.D. (2011). The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20, 649-660 .10.1016/j.ccr.2011.10.022
[51] Zhao, Y., and Shao, F. (2012). NLRC5: a NOD-like receptor protein with many faces in immune regulation. Cell Res 22, 1099-1101 .10.1038/cr.2012.83
AI Summary AI Mindmap
PDF(389 KB)

Accesses

Citations

Detail

Sections
Recommended

/