Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase

Yi Sun(), Hua Li

PDF(844 KB)
PDF(844 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (2) : 103-116. DOI: 10.1007/s13238-012-2105-7
REVIEW
REVIEW

Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase

  • Yi Sun(), Hua Li
Author information +
History +

Abstract

SAG (Sensitive to Apoptosis Gene), also known as RBX2 (RING box protein 2), ROC2 (Regulator of Cullins 2), or RNF7 (RING Finger Protein 7), was originally cloned in our laboratory as a redox inducible antioxidant protein and later characterized as the second member of the RBX/ROC RING component of the SCF (SKP1-CUL-F-box Proteins) E3 ubiquitin ligase. When acting alone, SAG scavenges oxygen radicals by forming inter- and intra- molecular disulfide bonds, whereas by forming a complex with other components of the SCF E3 ligase, SAG promotes ubiquitination and degradation of a number of protein substrates, including c-JUN, DEPTOR, HIF-1α, IκBα, NF1, NOXA, p27, and procaspase-3, thus regulating various signaling pathways and biological processes. Specifically, SAG protects cells from apoptosis, confers radioresistance, and plays an essential and non-redundant role in mouse embryogenesis and vasculogenesis. Furthermore, stress-inducible SAG is overexpressed in a number of human cancers and SAG overexpression correlates with poor patient prognosis. Finally, SAG transgenic expression in epidermis causes an early stage inhibition, but later stage promotion, of skin tumorigenesis triggered by DMBA/TPA. Given its major role in promoting targeted degradation of tumor suppressive proteins, leading to apoptosis suppression and accelerated tumorigenesis, SAG E3 ligase appears to be an attractive anticancer target.

Keywords

antioxidant / angiogenesis / apoptosis / Cullin-RING ligases / radiation resistance / reactive oxygen species / SAG/RBX2/ROC2/RNF7 / SCF E3 ligases / tumorigenesis / ubiquitin ligase / vasculogenesis

Cite this article

Download citation ▾
Yi Sun, Hua Li. Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase. Prot Cell, 2013, 4(2): 103‒116 https://doi.org/10.1007/s13238-012-2105-7

References

[1] Ahmed, K.M., and Li, J.J. (2008). NF-kappa B-mediated adaptive resistance to ionizing radiation. Free Radic Biol Med 44, 1-13 .10.1016/j.freeradbiomed.2007.09.022
[2] Angel, P., and Karin, M. (1991). The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072, 129-157 .
[3] Baeuerle, P.A., and Baltimore, D. (1988a). Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappa B transcription factor. Cell 53, 211-217 .10.1016/0092-8674(88)90382-0
[4] Baeuerle, P.A., and Baltimore, D. (1988b). I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242, 540-546 .10.1126/science.3140380
[5] Bello, N.F., Lamsoul, I., Heuze, M.L., Metais, A., Moreaux, G., Calderwood, D.A., Duprez, D., Moog-Lutz, C., and Lutz, P.G. (2009). The E3 ubiquitin ligase specificity subunit ASB2beta is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradation. Cell Death Differ 16, 921-932 .10.1038/cdd.2009.27
[6] Brownell, J.E., Sintchak, M.D., Gavin, J.M., Liao, H., Bruzzese, F.J., Bump, N.J., Soucy, T.A., Milhollen, M.A., Yang, X., Burkhardt, A.L., . (2010). Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol Cell 37, 102-111 .10.1016/j.molcel.2009.12.024
[7] Cai, Q.L., Knight, J.S., Verma, S.C., Zald, P., and Robertson, E.S. (2006). EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog 2, e116.10.1371/journal.ppat.0020116
[8] Carrano, A.C., Eytan, E., Hershko, A., and Pagano, M. (1999). SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1, 193-199 .10.1038/12013
[9] Chanalaris, A., Sun, Y., Latchman, D.S., and Stephanou, A. (2003). SAG attenuates apoptotic cell death caused by simulated ischaemia/reoxygenation in rat cardiomyocytes. J Mol Cell Cardiol 35, 257-264 .10.1016/S0022-2828(03)00003-8
[10] Chen, L., Willis, S.N., Wei, A., Smith, B.J., Fletcher, J.I., Hinds, M.G., Colman, P.M., Day, C.L., Adams, J.M., and Huang, D.C. (2005). Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17, 393-403 .10.1016/j.molcel.2004.12.030
[11] Cichowski, K., and Jacks, T. (2001). NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593-604 .10.1016/S0092-8674(01)00245-8
[12] Ciechanover, A. (1998). The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17, 7151-7160 .10.1093/emboj/17.24.7151
[13] Cook, J.A., Gius, D., Wink, D.A., Krishna, M.C., Russo, A., and Mitchell, J.B. (2004). Oxidative stress, redox, and the tumor microenvironment. Semin Radiat Oncol 14, 259-266 .10.1016/j.semradonc.2004.04.001
[14] Cryns, V., and Yuan, J. (1998). Proteases to die for. Genes Dev 12, 1551-1570 .10.1101/gad.12.11.1551
[15] Deneke, S.M. (2000). Thiol-based antioxidants. Curr Top Cell Regul 36, 151-180 .10.1016/S0070-2137(01)80007-8
[16] Deshaies, R.J., and Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases. Annu Rev Biochem 78, 399-434 .10.1146/annurev.biochem.78.101807.093809
[17] Dhillon, A.S., Hagan, S., Rath, O., and Kolch, W. (2007). MAP kinase signalling pathways in cancer. Oncogene 26, 3279-3290 .10.1038/sj.onc.1210421
[18] Duan, H., Tsvetkov, L.M., Liu, Y., Song, Y., Swaroop, M., Wen, R., Kung, H.F., Zhang, H., and Sun, Y. (2001). Promotion of S-phase entry and cell growth under serum starvation by SAG/ROC2/Rbx2/Hrt2, an E3 ubiquitin ligase component: association with inhibition of p27 accumulation. Mol Carcinog 30, 37-46 .10.1002/1098-2744(200101)30:1<37::AID-MC1011>3.0.CO;2-7
[19] Duan, H., Wang, Y., Aviram , M., Swaroop, M., Loo, J.A., Bian, J., Tian, Y., Mueller, T., Bisgaier, C.L., and Sun, Y. (1999). SAG, a novel zinc RING finger protein that protects cells from apoptosis induced by redox agents. Mol Cell Biol 19, 3145-3155 .
[20] Duan, S., Skaar, J.R., Kuchay, S., Toschi, A., Kanarek, N., Ben-Neriah, Y., and Pagano, M. (2011). mTOR Generates an auto-amplification loop by triggering the betaTrCP- and CK1alpha-dependent degradation of DEPTOR. Mol Cell 44, 317-324 .10.1016/j.molcel.2011.09.005
[21] Earnshaw, W.C., Martins, L.M., and Kaufmann, S.H. (1999). Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68, 383-424 .10.1146/annurev.biochem.68.1.383
[22] Feng, L., Allen, N.S., Simo, S., and Cooper, J.A. (2007). Cullin 5 regulates Dab1 protein levels and neuron positioning during cortical development. Genes Dev 21, 2717-2730 .10.1101/gad.1604207
[23] Fenner, B.J., Scannell, M., and Prehn, J.H. (2010). Expanding the substantial interactome of NEMO using protein microarrays. PLoS One 5, e8799.10.1371/journal.pone.0008799
[24] Frei, B., Stocker, R., and Ames, B.N. (1988). Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci U S A 85, 9748-9752 .10.1073/pnas.85.24.9748
[25] Fuchs, S.Y., Chen, A., Xiong, Y., Pan, Z.Q., and Ronai, Z. (1999). HOS, a human homolog of Slimb, forms an SCF complex with Skp1 and Cullin1 and targets the phosphorylation-dependent degradation of IkappaB and beta-catenin. Oncogene 18, 2039-2046 .10.1038/sj.onc.1202760
[26] Gao, D., Inuzuka, H., Tan, M.K., Fukushima, H., Locasale, J.W., Liu, P., Wan, L., Zhai, B., Chin, Y.R., Shaik, S., . (2011). mTOR drives its own activation via SCF(betaTrCP)-dependent degradation of the mTOR inhibitor DEPTOR. Mol Cell 44, 290-303 .10.1016/j.molcel.2011.08.030
[27] Gu, Q., Bowden, G.T., Normolle, D., and Sun, Y. (2007a). SAG/ROC2 E3 ligase regulates skin carcinogenesis by stage-dependent targeting of c-Jun/AP1 and IkappaB-alpha/ NF-kappaB. J Cell Biol 178, 1009-1023 .10.1083/jcb.200612067
[28] Gu, Q., Tan, M., and Sun, Y. (2007b). SAG/ROC2/Rbx2 is a novel activator protein-1 target that promotes c-Jun degradation and inhibits 12-O-tetradecanoylphorbol-13-acetate-induced neoplastic transformation. Cancer Res 67, 3616-3625 .10.1158/0008-5472.CAN-06-4020
[29] He, H., Gu, Q., Zheng, M., Normolle, D., and Sun, Y. (2008). SAG/ROC2/RBX2 E3 ligase promotes UVB-induced skin hyperplasia, but not skin tumors, by simultaneously targeting c-Jun/AP-1 and p27. Carcinogenesis 29, 858-865 .10.1093/carcin/bgn021
[30] He, H., Tan, M., Pamarthy, D., Wang, G., Ahmed, K., and Sun, Y. (2007). CK2 phosphorylation of SAG at Thr10 regulates SAG stability, but not its E3 ligase activity. Mol Cell Biochem 295, 179-188 .10.1007/s11010-006-9287-3
[31] Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu Rev Biochem 67, 425-479 .10.1146/annurev.biochem.67.1.425
[32] Hershko, A., Ciechanover, A., and Varshavsky, A. (2000). Basic Medical Research Award. The ubiquitin system. Nat Med 6, 1073-1081 .10.1038/80384
[33] Huang, Y., Duan, H., and Sun, Y. (2001). Elevated expression of SAG/ROC2/Rbx2/Hrt2 in human colon carcinomas: SAG does not induce neoplastic transformation, but its antisense transfection inhibits tumor cell growth. Mol Carcinog 30, 62-70 .10.1002/1098-2744(200101)30:1<62::AID-MC1014>3.0.CO;2-A
[34] Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G., Jr. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468 .10.1126/science.1059817
[35] Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., . (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472 .10.1126/science.1059796
[36] Jackson, E.L., Willis, N., Mercer, K., Bronson, R.T., Crowley, D., Montoya, R., Jacks, T., and Tuveson, D.A. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15, 3243-3248 .10.1101/gad.943001
[37] Jia, L., Li, H., and Sun, Y. (2011). Induction of p21-Dependent Senescence by an NAE Inhibitor, MLN4924, as a Mechanism of Growth Suppression. Neoplasia 13, 561-569 .
[38] Jia, L., and Sun, Y. (2011). SCF E3 ubiquitin ligases as anticancer targets. Curr Cancer Drug Targets 11, 347-356 .10.2174/156800911794519734
[39] Jia, L., Yang, J., Hao, X., Zheng, M., He, H., Xiong, X., Xu, L., and Sun, Y. (2010). Validation of SAG/RBX2/ROC2 E3 Ubiquitin Ligase as an Anticancer and Radiosensitizing Target. Clin Cancer Res 16, 814-824 .10.1158/1078-0432.CCR-09-1592
[40] Jin, J., Cardozo, T., Lovering, R.C., Elledge, S.J., Pagano, M., and Harper, J.W. (2004). Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18, 2573-2580 .10.1101/gad.1255304
[41] Kamura, T., Maenaka, K., Kotoshiba, S., Matsumoto, M., Kohda, D., Conaway, R.C., Conaway, J.W., and Nakayama, K.I. (2004). VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev 18, 3055-3065 .10.1101/gad.1252404
[42] Kim, D.W., Lee, S.H., Jeong, M.S., Sohn, E.J., Kim, M.J., Jeong, H.J., An, J.J., Jang, S.H., Won, M.H., Hwang, I.K., . (2010). Transduced Tat-SAG fusion protein protects against oxidative stress and brain ischemic insult. Free Radic Biol Med 48, 969-977 .10.1016/j.freeradbiomed.2010.01.023
[43] Kim, H., Rafiuddin-Shah, M., Tu, H.C., Jeffers, J.R., Zambetti, G.P., Hsieh, J.J., and Cheng, E.H. (2006). Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8, 1348-1358 .10.1038/ncb1499
[44] Kim, S.Y., Bae, Y. S., Park, J. W. (2002). Thio-linked peroxidase activity of human sensitive to apoptosis gene (SAG) protein. Free Radic Res 36, 73-78 .10.1080/10715760210164
[45] Kim, S.Y., Kim, M.Y., Mo, J.S., Park, J.W., and Park, H.S. (2007). SAG protects human neuroblastoma SH-SY5Y cells against 1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicity via the downregulation of ROS generation and JNK signaling. Neurosci Lett 413, 132-136 .10.1016/j.neulet.2006.11.074
[46] Kim, S.Y., Lee, J. H., Yang, E. S., Kil, I. S., Bae, Y. S. (2003a). Human sensitive to apoptosis gene protein inhibits peroxynitrite-induced DNA damage. Biochem Biophys Res Commun 301, 671-674 .10.1016/S0006-291X(03)00018-4
[47] Kim, S.Y., Yang, E.S., Lee, Y.S., Lee, J., and Park, J.W. (2011). Sensitive to apoptosis gene protein regulates ionizing radiation-induced apoptosis. Biochimie 93, 269-276 .10.1016/j.biochi.2010.09.020
[48] Kim, Y.S., Lee, J. Y., Son, M. Y., Park, W., Bae, Y.S. (2003b). Phosphorylation of threonine-10 on CKBBP1/SAG/ROC2/Rbx2 by protein kinase CKII promotes the degradation of IkBa and p27kip1. J. Biol. Chem 278, 28462-28469 .10.1074/jbc.M302584200
[49] Kohroki, J., Nishiyama, T., Nakamura, T., and Masuho, Y. (2005). ASB proteins interact with Cullin5 and Rbx2 to form E3 ubiquitin ligase complexes. FEBS Lett 579, 6796-6802 .10.1016/j.febslet.2005.11.016
[50] Kranenburg, O., Gebbink, M.F., and Voest, E.E. (2004). Stimulation of angiogenesis by Ras proteins. Biochim Biophys Acta 1654, 23-37 .
[51] Kuang, Z., Yao, S., Xu, Y., Lewis, R.S., Low, A., Masters, S.L., Willson, T.A., Kolesnik, T.B., Nicholson, S.E., Garrett, T.J., . (2009). SPRY domain-containing SOCS box protein 2: crystal structure and residues critical for protein binding. J Mol Biol 386, 662-674 .10.1016/j.jmb.2008.12.078
[52] Laszlo, G.S., and Cooper, J.A. (2009). Restriction of Src activity by Cullin-5. Curr Biol 19, 157-162 .10.1016/j.cub.2008.12.007
[53] Le, L.Q., and Parada, L.F. (2007). Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene 26, 4609-4616 .10.1038/sj.onc.1210261
[54] Lee, J., and Zhou, P. (2010). Cullins and cancer. Genes Cancer 1, 690-699 .10.1177/1947601910382899
[55] Lee, S.J., Yang, E.S., Kim, S.Y., Shin, S.W., and Park, J.W. (2008). Regulation of heat shock-induced apoptosis by sensitive to apoptosis gene protein. Free Radic Biol Med 45, 167-176 .10.1016/j.freeradbiomed.2008.03.026
[56] Li, W., Bengtson, M.H., Ulbrich, A., Matsuda, A., Reddy, V.A., Orth, A., Chanda, S.K., Batalov, S., and Joazeiro, C.A. (2008). Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One 3, e1487.10.1371/journal.pone.0001487
[57] Liang, P., and Pardee, A.B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [see comments]. Science 257, 967-971 .10.1126/science.1354393
[58] Lin, H.K., Chen, Z., Wang, G., Nardella, C., Lee, S.W., Chan, C.H., Yang, W.L., Wang, J., Egia, A., Nakayama, K.I., . (2010a). Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464, 374-379 .10.1038/nature08815
[59] Lin, J.J., Milhollen, M.A., Smith, P.G., Narayanan, U., and Dutta, A. (2010b). NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res 70, 10310-10320 .10.1158/0008-5472.CAN-10-2062
[60] Lipkowitz, S., and Weissman, A.M. (2011). RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 11, 629-643 .10.1038/nrc3120
[61] Luo, Z., Yu, G., Lee, H.W., Li, L., Wang, L., Yang, D., Pan, Y., Ding, C., Qian, J., Wu, L., . (2012). The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Res 72, 3360-3371 .10.1158/0008-5472.CAN-12-0388
[62] Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275 .10.1038/20459
[63] Milhollen, M.A., Narayanan, U., Soucy, T.A., Veiby, P.O., Smith, P.G., and Amidon, B. (2011). Inhibition of NEDD8-activating enzyme induces rereplication and apoptosis in human tumor cells consistent with deregulating CDT1 turnover. Cancer Res 71, 3042-3051 .10.1158/0008-5472.CAN-10-2122
[64] Milhollen, M.A., Traore, T., Adams-Duffy, J., Thomas, M.P., Berger, A.J., Dang, L., Dick, L.R., Garnsey, J.J., Koenig, E., Langston, S.P., . (2010). MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-{kappa}B-dependent lymphoma. Blood 116, 1515-1523 .10.1182/blood-2010-03-272567
[65] Moore, R., and Boyd, L. (2004). Analysis of RING finger genes required for embryogenesis in C. elegans. Genesis 38, 1-12 .10.1002/gene.10243
[66] Nakayama, K.I., and Nakayama, K. (2006). Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6, 369-381 .10.1038/nrc1881
[67] Nateri, A.S., Riera-Sans, L., Da Costa, C., and Behrens, A. (2004). The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science 303, 1374-1378 .10.1126/science.1092880
[68] Nawrocki, S.T., Griffin, P., Kelly, K.R., and Carew, J.S. (2012). MLN4924 : a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy. Expert Opin Investig Drugs 21, 1563-1573 .10.1517/13543784.2012.707192
[69] Ohta, T., Michel, J.J., Schottelius, A.J., and Xiong, Y. (1999). ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell 3, 535-541 .10.1016/S1097-2765(00)80482-7
[70] Ozden, S.A., Ozyurt, H., Ozgen, Z., Kilinc, O., Oncel, M., Gul, A.E., Karadayi, N., Serakinci, N., Kan, B., and Orun, O. (2011). Prognostic role of sensitive-to-apoptosis gene expression in rectal cancer. World J Gastroenterol 17, 4905-4910 .10.3748/wjg.v17.i44.4905
[71] Pan, Q., Qiao, F., Gao, C., Norman, B., Optican, L., and Zelenka, P.S. (2011). Cdk5 targets active Src for ubiquitin-dependent degradation by phosphorylating Src(S75). Cell Mol Life Sci 68, 3425-3436 .10.1007/s00018-011-0638-1
[72] Persaud, A., Alberts, P., Amsen, E.M., Xiong, X., Wasmuth, J., Saadon, Z., Fladd, C., Parkinson, J., and Rotin, D. (2009). Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Mol Syst Biol 5, 333.10.1038/msb.2009.85
[73] Peterson, T.R., Laplante, M., Thoreen, C.C., Sancak, Y., Kang, S.A., Kuehl, W.M., Gray, N.S., and Sabatini, D.M. (2009). DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873-886 .10.1016/j.cell.2009.03.046
[74] Querido, E., Blanchette, P., Yan, Q., Kamura, T., Morrison, M., Boivin, D., Kaelin, W.G., Conaway, R.C., Conaway, J.W., and Branton, P.E. (2001). Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 15, 3104-3117 .10.1101/gad.926401
[75] Reynolds, P.J., Simms, J.R., and Duronio, R.J. (2008). Identifying determinants of cullin binding specificity among the three functionally different Drosophila melanogaster Roc proteins via domain swapping. PLoS One 3, e2918.10.1371/journal.pone.0002918
[76] Sarikas, A., Hartmann, T., and Pan, Z.Q. (2011). The cullin protein family. Genome Biol 12, 220.10.1186/gb-2011-12-4-220
[77] Sasaki, H., Yukiue, H., Kobayashi, Y., Moriyama, S., Nakashima, Y., Kaji, M., Fukai, I., Kiriyama, M., Yamakawa, Y., and Fujii, Y. (2001). Expression of the sensitive to apoptosis gene, SAG, as a prognostic marker in nonsmall cell lung cancer. Int J Cancer 95, 375-377 .10.1002/1097-0215(20011120)95:6<375::AID-IJC1066>3.0.CO;2-L
[78] Sato, M., and Bremner, I. (1993). Oxygen free radicals and metallothionein. Free Radic Biol Med 14, 325-337 .10.1016/0891-5849(93)90029-T
[79] Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3, 721-732 .10.1038/nrc1187
[80] Seol, J.H., Feldman, R.M.R., Zachariae, W.Z., Shevchenko, A., Correll, C.C., Lyapina, S., Chi, Y., Galova, M., Claypool, J., Sandmeyer, S., . (1999). Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes & Dev 13, 1614-1626 .10.1101/gad.13.12.1614
[81] Shaulian, E., and Karin, M. (2002). AP-1 as a regulator of cell life and death. Nat Cell Biol 4, E 131-136 .10.1038/ncb0502-e131
[82] Sherr, C.J., and Roberts, J.M. (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9, 1149-1163 .10.1101/gad.9.10.1149
[83] Sherr, C.J., and Roberts, J.M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13, 1501-1512 .10.1101/gad.13.12.1501
[84] Simo, S., Jossin, Y., and Cooper, J.A. (2010). Cullin 5 regulates cortical layering by modulating the speed and duration of Dab1-dependent neuronal migration. J Neurosci 30, 5668-5676 .10.1523/JNEUROSCI.0035-10.2010
[85] Son, M.Y., Park, J.W., Kim, Y.S., Kang, S.W., Marshak, D.R., Park, W., and Bae, Y.S. (1999). Protein kinase CKII interacts with and phosphorylates the SAG protein containing ring-H2 finger motif. Biochem Biophys Res Commun 263, 743-748 .10.1006/bbrc.1999.1460
[86] Soucy, T.A., Dick, L.R., Smith, P.G., Milhollen, M.A., and Brownell, J.E. (2010). The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer 1, 708-716 .10.1177/1947601910382898
[87] Soucy, T.A., Smith, P.G., Milhollen, M.A., Berger, A.J., Gavin, J.M., Adhikari, S., Brownell, J.E., Burke, K.E., Cardin, D.P., Critchley, S., . (2009a). An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732-736 .10.1038/nature07884
[88] Soucy, T.A., Smith, P.G., and Rolfe, M. (2009b). Targeting NEDD8-activated cullin-RING ligases for the treatment of cancer. Clin Cancer Res 15, 3912-3916 .10.1158/1078-0432.CCR-09-0343
[89] Sun, Y. (1990). Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic Biol Med 8, 583-599 .10.1016/0891-5849(90)90156-D
[90] Sun, Y. (1997). Induction of glutathione synthetase by 1,10-phenanthroline. FEBS Lett 408, 16-20 .10.1016/S0014-5793(97)00380-3
[91] Sun, Y. (1999). Alteration of SAG mRNA in human cancer cell lines: requirement for the RING finger domain for apoptosis protection. Carcinogenesis 20, 1899-1903 .10.1093/carcin/20.10.1899
[92] Sun, Y. (2000). Identification and characterization of genes responsive to apoptosis: Application of DNA chip technology and mRNA differential display. Histol Histopathol 15, 1271-1284 .
[93] Sun, Y. (2003). Targeting E3 ubiquitin ligases for cancer therapy. Cancer Biol Therapy 2, 623-629 .10.4161/cbt.2.6.677
[94] Sun, Y. (2006). E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia 8, 645-654 .10.1593/neo.06376
[95] Sun, Y. (2008). RNF7 (RING finger protein-7). Atlas Genet Cytogenet Oncol Haematol 12, 289-291 .
[96] Sun, Y., Bian, J., Wang, Y., and Jacobs, C. (1997). Activation of p53 transcriptional activity by 1,10-phenanthroline, a metal chelator and redox sensitive compound. Oncogene 14, 385-393 .10.1038/sj.onc.1200834
[97] Sun, Y., Tan, M., Duan, H., and Swaroop, M. (2001). SAG/ROC/Rbx/Hrt, a zinc RING finger gene family: molecular cloning, biochemical properties, and biological functions. Antioxid Redox Signal 3, 635-650 .10.1089/15230860152542989
[98] Sutterluty, H., Chatelain, E., Marti, A., Wirbelauer, C., Senften, M., Muller, U., and Krek, W. (1999). p 45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol 1, 207-214 .10.1038/12027
[99] Swaroop, M., Bian, J., Aviram, M., Duan, H., Bisgaier, C.L., Loo, J.A., and Sun, Y. (1999). Expression, purification, and biochemical characterization of SAG, a RING finger redox sensitive protein. Free Radicals Biol Med 27, 193-202 .10.1016/S0891-5849(99)00078-7
[100] Swaroop, M., Gosink, M., and Sun, Y. (2001). SAG/ROC2/Rbx2/Hrt2, a component of SCF E3 ubiquitin ligase: genomic structure, a splicing variant, and two family pseudogenes. DNA Cell Biol 20, 425-434 .10.1089/104454901750361488
[101] Swaroop, M., Wang, Y., Miller, P., Duan, H., Jatkoe, T., Madore, S., and Sun, Y. (2000). Yeast homolog of human SAG/ROC2/Rbx2/ Hrt2 is essential for cell growth, but not for germination: Chip profiling implicates its role in cell cycle regulation. Oncogene 19, 2855-2866 .10.1038/sj.onc.1203635
[102] Swords, R.T., Kelly, K.R., Smith, P.G., Garnsey, J.J., Mahalingam, D., Medina, E., Oberheu, K., Padmanabhan, S., O'Dwyer, M., Nawrocki, S.T., . (2010). Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia. Blood 115, 3796-3800 .10.1182/blood-2009-11-254862
[103] Tan, M., Davis, S.W., Saunders, T.L., Zhu, Y., and Sun, Y. (2009). RBX1/ROC1 disruption results in early embryonic lethality due to proliferation failure, partially rescued by simultaneous loss of p27. Proc Natl Acad Sci U S A 106, 6203-6208 .10.1073/pnas.0812425106
[104] Tan, M., Gallegos, J.R., Gu, Q., Huang, Y., Li, J., Jin, Y., Lu, H., and Sun, Y. (2006). SAG/ROC-SCFbeta-TrCP E3 ubiquitin ligase promotes pro-caspase-3 degradation as a mechanism of apoptosis protection. Neoplasia 8, 1042-1054 .10.1593/neo.06568
[105] Tan, M., Gu, Q., He, H., Pamarthy, D., Semenza, G.L., and Sun, Y. (2008). SAG/ROC2/RBX2 is a HIF-1 target gene that promotes HIF-1alpha ubiquitination and degradation. Oncogene 27, 1404-1411 .10.1038/sj.onc.1210780
[106] Tan, M., Li, Y., Yang, R., Xi, N., and Sun, Y. (2011a). Inactivation of SAG E3 ubiquitin ligase blocks embryonic stem cell differentiation and sensitizes leukemia cells to retinoid acid. PLoS One 6, e27726.10.1371/journal.pone.0027726
[107] Tan, M., Zhao, Y., Kim, S.J., Liu, M., Jia, L., Saunders, T.L., Zhu, Y., and Sun, Y. (2011b). SAG/RBX2/ROC2 E3 Ubiquitin Ligase Is Essential for Vascular and Neural Development by Targeting NF1 for Degradation. Dev Cell 21, 1062-1076 .10.1016/j.devcel.2011.09.014
[108] Tan, M., Zhu, Y., Kovacev, J., Zhao, Y., Pan, Z.Q., Spitz, D.R., and Sun, Y. (2010). Disruption of Sag/Rbx2/Roc2 induces radiosensitization by increasing ROS levels and blocking NF-kB activation in mouse embryonic stem cells. Free Radic Biol Med 49976-983 .10.1016/j.freeradbiomed.2010.05.030
[109] Tsvetkov, L.M., Yeh, K.- H., Lee, S.- J., Sun, H., and Zhang, H. (1999). p27kip1ubiquitination and degradation is regulated by the SCFskp2 complex through phosphorylated Thr187 in p27. Cur Biol 9, 661-664 .10.1016/S0960-9822(99)80290-5
[110] Vesterlund, M., Zadjali, F., Persson, T., Nielsen, M.L., Kessler, B.M., Norstedt, G., and Flores-Morales, A. (2011). The SOCS2 ubiquitin ligase complex regulates growth hormone receptor levels. PLoS One 6, e25358.10.1371/journal.pone.0025358
[111] Viarengo, A., Burlando, B., Ceratto, N., and Panfoli, I. (2000). Antioxidant role of metallothioneins: a comparative overview. Cell Mol Biol 46, 407-417 .
[112] Wei, D., Li, H., Yu, J., Sebolt, J.T., Zhao, L., Lawrence, T.S., Smith, P.G., Morgan, M.A., and Sun, Y. (2012). Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor. Cancer Res 72, 282-293 .10.1158/0008-5472.CAN-11-2866
[113] Wei, D., Morgan, M.A., Sun, Y. (2012). Radiosensitization of cancer cells by inactivation of cullin-RING E3 ubiquitin ligases. Transl Oncol 5, 305-312 .
[114] Wei, D., and Sun, Y. (2010). Small RING finger proteins RBX1 and RBX2 of SCF E3 ubiquitin ligases: the role in cancer and as cancer targets. Genes Cancer 1, 700-707 .10.1177/1947601910382776
[115] Wei, W., Jin, J., Schlisio, S., Harper, J.W., and Kaelin, W.G., Jr. (2005). The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8, 25-33 .10.1016/j.ccr.2005.06.005
[116] Welcker, M., and Clurman, B.E. (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8, 83-93 .10.1038/nrc2290
[117] Willems, A.R., Schwab, M., and Tyers, M. (2004). A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. Biochim Biophys Acta 1695, 133-170 .10.1016/j.bbamcr.2004.09.027
[118] Winston, J.T., Strack, P., Beer-Romero, P., Chu, C.Y., Elledge, S.J., and Harper, J.W. (1999). The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13, 270-283 .10.1101/gad.13.3.270
[119] Wrighton, K.H. (2011). Cell signalling: mTOR targets its own inhibitor. Nat Rev Mol Cell Biol 12, 769.10.1038/nrm3055
[120] Wu, K., Fuchs, S.Y., Chen, A., Tan, P., Gomez, C., Ronai, Z., and Pan, Z.Q. (2000a). The SCF(HOS/beta-TRCP)-ROC1 E3 ubiquitin ligase utilizes two distinct domains within CUL1 for substrate targeting and ubiquitin ligation. Mol Cell Biol 20 , 1382-1393 .10.1128/MCB.20.4.1382-1393.2000
[121] Wu, K., Fuchs, S.Y., Chen, G., Tan, P., Gomez, C., Ronai, Z., and Pan, Z.- Q. (2000b). The SCFHOS/b-TRCP-ROC1 E3 ubiquitin ligase utilizes two distinct domains within CUL1 for substrate targeting and ubiquitin ligation. Mol. Cell. Biol . 20, 1382-1393 .10.1128/MCB.20.4.1382-1393.2000
[122] Yamaoka, S., Courtois, G., Bessia, C., Whiteside, S.T., Weil, R., Agou, F., Kirk, H.E., Kay, R.J., and Israel, A. (1998). Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93, 1231-1240 .10.1016/S0092-8674(00)81466-X
[123] Yang, D., Tan, M., Wang, G., and Sun, Y. (2012). The p21-dependent radiosensitization of human breast cancer cells by MLN4924, an investigational inhibitor of NEDD8 activating enzyme. PLoS One 7, e34079.10.1371/journal.pone.0034079
[124] Yang, E.S., Huh, Y.J., and Park, J.W. (2010). Knockdown of sensitive to apoptosis gene by small interfering RNA enhances the sensitivity of PC3 cells toward actinomycin D and etoposide. Free Radic Res 44, 864-870 .10.3109/10715762.2010.485996
[125] Yang, E.S., and Park, J.W. (2006). Regulation of nitric oxide-induced apoptosis by sensitive to apoptosis gene protein. Free Radic Res 40, 279-284 .10.1080/10715760500511500
[126] Yang, G.Y., Pang, L., Ge, H.L., Tan, M., Ye, W., Liu, X.H., Huang, F.P., Wu, D.C., Che, X.M., Song, Y., . (2001). Attenuation of ischemia-induced mouse brain injury by SAG, a redox- inducible antioxidant protein. J Cereb Blood Flow Metab 21, 722-733 .10.1097/00004647-200106000-00010
[127] Yasukawa, T., Kamura, T., Kitajima, S., Conaway, R.C., Conaway, J.W., and Aso, T. (2008). Mammalian Elongin A complex mediates DNA-damage-induced ubiquitylation and degradation of Rpb1. EMBO J 27, 3256-3266 .10.1038/emboj.2008.249
[128] Yoo, D.Y., Shin, B.N., Kim, I.H., Kim, D.W., Yoo, K.Y., Kim, W., Lee, C.H., Choi, J.H., Yoon, Y.S., Choi, S.Y., . (2012). Effects of sensitive to apoptosis gene protein on cell proliferation, neuroblast differentiation, and oxidative stress in the mouse dentate gyrus. Neurochem Res 37, 495-502 .10.1007/s11064-011-0634-8
[129] Yu, X., Yu, Y., Liu, B., Luo, K., Kong, W., Mao, P., and Yu, X.F. (2003). Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056-1060 .10.1126/science.1089591
[130] Zhao, L., Yue, P., Lonial, S., Khuri, F.R., and Sun, S.Y. (2011a). The NEDD8-activating enzyme inhibitor, MLN4924, cooperates with TRAIL to augment apoptosis through facilitating c-FLIP degradation in head and neck cancer cells. Mol Cancer Ther 10, 2415-2425 .10.1158/1535-7163.MCT-11-0401
[131] Zhao, Y., and Sun, Y. (2012). Targeting the mTOR-DEPTOR Pathway by CRL E3 Ubiquitin Ligases: Therapeutic Application. Neoplasia 14, 360-367 .
[132] Zhao, Y., Xiong, X., Jia, L., and Sun, Y. (2012). Targeting Cullin-RING ligases by MLN4924 induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis. Cell Death Dis 3, e386.10.1038/cddis.2012.125
[133] Zhao, Y., Xiong, X., and Sun, Y. (2011b). DEPTOR, an mTOR inhibitor, is a physiological substrate of SCFβTrCP E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 44, 304-316.10.1016/j.molcel.2011.08.029
AI Summary AI Mindmap
PDF(844 KB)

Accesses

Citations

Detail

Sections
Recommended

/