[1] Ahmed, K.M., and Li, J.J. (2008). NF-kappa B-mediated adaptive resistance to ionizing radiation.
Free Radic Biol Med 44, 1-13 .
10.1016/j.freeradbiomed.2007.09.022[2] Angel, P., and Karin, M. (1991). The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation.
Biochim Biophys Acta 1072, 129-157 .
[3] Baeuerle, P.A., and Baltimore, D. (1988a). Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappa B transcription factor.
Cell 53, 211-217 .
10.1016/0092-8674(88)90382-0[4] Baeuerle, P.A., and Baltimore, D. (1988b). I kappa B: a specific inhibitor of the NF-kappa B transcription factor.
Science 242, 540-546 .
10.1126/science.3140380[5] Bello, N.F., Lamsoul, I., Heuze, M.L., Metais, A., Moreaux, G., Calderwood, D.A., Duprez, D., Moog-Lutz, C., and Lutz, P.G. (2009). The E3 ubiquitin ligase specificity subunit ASB2beta is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradation.
Cell Death Differ 16, 921-932 .
10.1038/cdd.2009.27[6] Brownell, J.E., Sintchak, M.D., Gavin, J.M., Liao, H., Bruzzese, F.J., Bump, N.J., Soucy, T.A., Milhollen, M.A., Yang, X., Burkhardt, A.L.,
. (2010). Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ.
Mol Cell 37, 102-111 .
10.1016/j.molcel.2009.12.024[7] Cai, Q.L., Knight, J.S., Verma, S.C., Zald, P., and Robertson, E.S. (2006). EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors.
PLoS Pathog 2, e116.
10.1371/journal.ppat.0020116[8] Carrano, A.C., Eytan, E., Hershko, A., and Pagano, M. (1999). SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27.
Nat Cell Biol 1, 193-199 .
10.1038/12013[9] Chanalaris, A., Sun, Y., Latchman, D.S., and Stephanou, A. (2003). SAG attenuates apoptotic cell death caused by simulated ischaemia/reoxygenation in rat cardiomyocytes.
J Mol Cell Cardiol 35, 257-264 .
10.1016/S0022-2828(03)00003-8[10] Chen, L., Willis, S.N., Wei, A., Smith, B.J., Fletcher, J.I., Hinds, M.G., Colman, P.M., Day, C.L., Adams, J.M., and Huang, D.C. (2005). Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function.
Mol Cell 17, 393-403 .
10.1016/j.molcel.2004.12.030[11] Cichowski, K., and Jacks, T. (2001). NF1 tumor suppressor gene function: narrowing the GAP.
Cell 104, 593-604 .
10.1016/S0092-8674(01)00245-8[12] Ciechanover, A. (1998). The ubiquitin-proteasome pathway: on protein death and cell life.
EMBO J 17, 7151-7160 .
10.1093/emboj/17.24.7151[13] Cook, J.A., Gius, D., Wink, D.A., Krishna, M.C., Russo, A., and Mitchell, J.B. (2004). Oxidative stress, redox, and the tumor microenvironment.
Semin Radiat Oncol 14, 259-266 .
10.1016/j.semradonc.2004.04.001[14] Cryns, V., and Yuan, J. (1998). Proteases to die for.
Genes Dev 12, 1551-1570 .
10.1101/gad.12.11.1551[15] Deneke, S.M. (2000). Thiol-based antioxidants.
Curr Top Cell Regul 36, 151-180 .
10.1016/S0070-2137(01)80007-8[16] Deshaies, R.J., and Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases.
Annu Rev Biochem 78, 399-434 .
10.1146/annurev.biochem.78.101807.093809[17] Dhillon, A.S., Hagan, S., Rath, O., and Kolch, W. (2007). MAP kinase signalling pathways in cancer.
Oncogene 26, 3279-3290 .
10.1038/sj.onc.1210421[18] Duan, H., Tsvetkov, L.M., Liu, Y., Song, Y., Swaroop, M., Wen, R., Kung, H.F., Zhang, H., and Sun, Y. (2001). Promotion of S-phase entry and cell growth under serum starvation by SAG/ROC2/Rbx2/Hrt2, an E3 ubiquitin ligase component: association with inhibition of p27 accumulation.
Mol Carcinog 30, 37-46 .
10.1002/1098-2744(200101)30:1<37::AID-MC1011>3.0.CO;2-7[19] Duan, H., Wang, Y., Aviram , M., Swaroop, M., Loo, J.A., Bian, J., Tian, Y., Mueller, T., Bisgaier, C.L., and Sun, Y. (1999). SAG, a novel zinc RING finger protein that protects cells from apoptosis induced by redox agents.
Mol Cell Biol 19, 3145-3155 .
[20] Duan, S., Skaar, J.R., Kuchay, S., Toschi, A., Kanarek, N., Ben-Neriah, Y., and Pagano, M. (2011). mTOR Generates an auto-amplification loop by triggering the betaTrCP- and CK1alpha-dependent degradation of DEPTOR.
Mol Cell 44, 317-324 .
10.1016/j.molcel.2011.09.005[21] Earnshaw, W.C., Martins, L.M., and Kaufmann, S.H. (1999). Mammalian caspases: structure, activation, substrates, and functions during apoptosis.
Annu Rev Biochem 68, 383-424 .
10.1146/annurev.biochem.68.1.383[22] Feng, L., Allen, N.S., Simo, S., and Cooper, J.A. (2007). Cullin 5 regulates Dab1 protein levels and neuron positioning during cortical development.
Genes Dev 21, 2717-2730 .
10.1101/gad.1604207[23] Fenner, B.J., Scannell, M., and Prehn, J.H. (2010). Expanding the substantial interactome of NEMO using protein microarrays.
PLoS One 5, e8799.
10.1371/journal.pone.0008799[24] Frei, B., Stocker, R., and Ames, B.N. (1988). Antioxidant defenses and lipid peroxidation in human blood plasma.
Proc Natl Acad Sci U S A 85, 9748-9752 .
10.1073/pnas.85.24.9748[25] Fuchs, S.Y., Chen, A., Xiong, Y., Pan, Z.Q., and Ronai, Z. (1999). HOS, a human homolog of Slimb, forms an SCF complex with Skp1 and Cullin1 and targets the phosphorylation-dependent degradation of IkappaB and beta-catenin.
Oncogene 18, 2039-2046 .
10.1038/sj.onc.1202760[26] Gao, D., Inuzuka, H., Tan, M.K., Fukushima, H., Locasale, J.W., Liu, P., Wan, L., Zhai, B., Chin, Y.R., Shaik, S.,
. (2011). mTOR drives its own activation via SCF(betaTrCP)-dependent degradation of the mTOR inhibitor DEPTOR.
Mol Cell 44, 290-303 .
10.1016/j.molcel.2011.08.030[27] Gu, Q., Bowden, G.T., Normolle, D., and Sun, Y. (2007a). SAG/ROC2 E3 ligase regulates skin carcinogenesis by stage-dependent targeting of c-Jun/AP1 and IkappaB-alpha/ NF-kappaB.
J Cell Biol 178, 1009-1023 .
10.1083/jcb.200612067[28] Gu, Q., Tan, M., and Sun, Y. (2007b). SAG/ROC2/Rbx2 is a novel activator protein-1 target that promotes c-Jun degradation and inhibits 12-O-tetradecanoylphorbol-13-acetate-induced neoplastic transformation.
Cancer Res 67, 3616-3625 .
10.1158/0008-5472.CAN-06-4020[29] He, H., Gu, Q., Zheng, M., Normolle, D., and Sun, Y. (2008). SAG/ROC2/RBX2 E3 ligase promotes UVB-induced skin hyperplasia, but not skin tumors, by simultaneously targeting c-Jun/AP-1 and p27.
Carcinogenesis 29, 858-865 .
10.1093/carcin/bgn021[30] He, H., Tan, M., Pamarthy, D., Wang, G., Ahmed, K., and Sun, Y. (2007). CK2 phosphorylation of SAG at Thr10 regulates SAG stability, but not its E3 ligase activity.
Mol Cell Biochem 295, 179-188 .
10.1007/s11010-006-9287-3[31] Hershko, A., and Ciechanover, A. (1998). The ubiquitin system.
Annu Rev Biochem 67, 425-479 .
10.1146/annurev.biochem.67.1.425[32] Hershko, A., Ciechanover, A., and Varshavsky, A. (2000). Basic Medical Research Award. The ubiquitin system.
Nat Med 6, 1073-1081 .
10.1038/80384[33] Huang, Y., Duan, H., and Sun, Y. (2001). Elevated expression of SAG/ROC2/Rbx2/Hrt2 in human colon carcinomas: SAG does not induce neoplastic transformation, but its antisense transfection inhibits tumor cell growth.
Mol Carcinog 30, 62-70 .
10.1002/1098-2744(200101)30:1<62::AID-MC1014>3.0.CO;2-A[34] Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G., Jr. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.
Science 292, 464-468 .
10.1126/science.1059817[35] Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J.,
. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation.
Science 292, 468-472 .
10.1126/science.1059796[36] Jackson, E.L., Willis, N., Mercer, K., Bronson, R.T., Crowley, D., Montoya, R., Jacks, T., and Tuveson, D.A. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras.
Genes Dev 15, 3243-3248 .
10.1101/gad.943001[37] Jia, L., Li, H., and Sun, Y. (2011). Induction of p21-Dependent Senescence by an NAE Inhibitor, MLN4924, as a Mechanism of Growth Suppression.
Neoplasia 13, 561-569 .
[38] Jia, L., and Sun, Y. (2011). SCF E3 ubiquitin ligases as anticancer targets.
Curr Cancer Drug Targets 11, 347-356 .
10.2174/156800911794519734[39] Jia, L., Yang, J., Hao, X., Zheng, M., He, H., Xiong, X., Xu, L., and Sun, Y. (2010). Validation of SAG/RBX2/ROC2 E3 Ubiquitin Ligase as an Anticancer and Radiosensitizing Target.
Clin Cancer Res 16, 814-824 .
10.1158/1078-0432.CCR-09-1592[40] Jin, J., Cardozo, T., Lovering, R.C., Elledge, S.J., Pagano, M., and Harper, J.W. (2004). Systematic analysis and nomenclature of mammalian F-box proteins.
Genes Dev 18, 2573-2580 .
10.1101/gad.1255304[41] Kamura, T., Maenaka, K., Kotoshiba, S., Matsumoto, M., Kohda, D., Conaway, R.C., Conaway, J.W., and Nakayama, K.I. (2004). VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases.
Genes Dev 18, 3055-3065 .
10.1101/gad.1252404[42] Kim, D.W., Lee, S.H., Jeong, M.S., Sohn, E.J., Kim, M.J., Jeong, H.J., An, J.J., Jang, S.H., Won, M.H., Hwang, I.K.,
. (2010). Transduced Tat-SAG fusion protein protects against oxidative stress and brain ischemic insult.
Free Radic Biol Med 48, 969-977 .
10.1016/j.freeradbiomed.2010.01.023[43] Kim, H., Rafiuddin-Shah, M., Tu, H.C., Jeffers, J.R., Zambetti, G.P., Hsieh, J.J., and Cheng, E.H. (2006). Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies.
Nat Cell Biol 8, 1348-1358 .
10.1038/ncb1499[44] Kim, S.Y., Bae, Y. S., Park, J. W. (2002). Thio-linked peroxidase activity of human sensitive to apoptosis gene (SAG) protein.
Free Radic Res 36, 73-78 .
10.1080/10715760210164[45] Kim, S.Y., Kim, M.Y., Mo, J.S., Park, J.W., and Park, H.S. (2007). SAG protects human neuroblastoma SH-SY5Y cells against 1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicity via the downregulation of ROS generation and JNK signaling.
Neurosci Lett 413, 132-136 .
10.1016/j.neulet.2006.11.074[46] Kim, S.Y., Lee, J. H., Yang, E. S., Kil, I. S., Bae, Y. S. (2003a). Human sensitive to apoptosis gene protein inhibits peroxynitrite-induced DNA damage.
Biochem Biophys Res Commun 301, 671-674 .
10.1016/S0006-291X(03)00018-4[47] Kim, S.Y., Yang, E.S., Lee, Y.S., Lee, J., and Park, J.W. (2011). Sensitive to apoptosis gene protein regulates ionizing radiation-induced apoptosis.
Biochimie 93, 269-276 .
10.1016/j.biochi.2010.09.020[48] Kim, Y.S., Lee, J. Y., Son, M. Y., Park, W., Bae, Y.S. (2003b). Phosphorylation of threonine-10 on CKBBP1/SAG/ROC2/Rbx2 by protein kinase CKII promotes the degradation of IkBa and p27kip1.
J. Biol. Chem 278, 28462-28469 .
10.1074/jbc.M302584200[49] Kohroki, J., Nishiyama, T., Nakamura, T., and Masuho, Y. (2005). ASB proteins interact with Cullin5 and Rbx2 to form E3 ubiquitin ligase complexes.
FEBS Lett 579, 6796-6802 .
10.1016/j.febslet.2005.11.016[50] Kranenburg, O., Gebbink, M.F., and Voest, E.E. (2004). Stimulation of angiogenesis by Ras proteins.
Biochim Biophys Acta 1654, 23-37 .
[51] Kuang, Z., Yao, S., Xu, Y., Lewis, R.S., Low, A., Masters, S.L., Willson, T.A., Kolesnik, T.B., Nicholson, S.E., Garrett, T.J.,
. (2009). SPRY domain-containing SOCS box protein 2: crystal structure and residues critical for protein binding.
J Mol Biol 386, 662-674 .
10.1016/j.jmb.2008.12.078[52] Laszlo, G.S., and Cooper, J.A. (2009). Restriction of Src activity by Cullin-5.
Curr Biol 19, 157-162 .
10.1016/j.cub.2008.12.007[53] Le, L.Q., and Parada, L.F. (2007). Tumor microenvironment and neurofibromatosis type I: connecting the GAPs.
Oncogene 26, 4609-4616 .
10.1038/sj.onc.1210261[54] Lee, J., and Zhou, P. (2010). Cullins and cancer.
Genes Cancer 1, 690-699 .
10.1177/1947601910382899[55] Lee, S.J., Yang, E.S., Kim, S.Y., Shin, S.W., and Park, J.W. (2008). Regulation of heat shock-induced apoptosis by sensitive to apoptosis gene protein.
Free Radic Biol Med 45, 167-176 .
10.1016/j.freeradbiomed.2008.03.026[56] Li, W., Bengtson, M.H., Ulbrich, A., Matsuda, A., Reddy, V.A., Orth, A., Chanda, S.K., Batalov, S., and Joazeiro, C.A. (2008). Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling.
PLoS One 3, e1487.
10.1371/journal.pone.0001487[57] Liang, P., and Pardee, A.B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [see comments].
Science 257, 967-971 .
10.1126/science.1354393[58] Lin, H.K., Chen, Z., Wang, G., Nardella, C., Lee, S.W., Chan, C.H., Yang, W.L., Wang, J., Egia, A., Nakayama, K.I.,
. (2010a). Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence.
Nature 464, 374-379 .
10.1038/nature08815[59] Lin, J.J., Milhollen, M.A., Smith, P.G., Narayanan, U., and Dutta, A. (2010b). NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells.
Cancer Res 70, 10310-10320 .
10.1158/0008-5472.CAN-10-2062[60] Lipkowitz, S., and Weissman, A.M. (2011). RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis.
Nat Rev Cancer 11, 629-643 .
10.1038/nrc3120[61] Luo, Z., Yu, G., Lee, H.W., Li, L., Wang, L., Yang, D., Pan, Y., Ding, C., Qian, J., Wu, L.,
. (2012). The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth.
Cancer Res 72, 3360-3371 .
10.1158/0008-5472.CAN-12-0388[62] Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.
Nature 399, 271-275 .
10.1038/20459[63] Milhollen, M.A., Narayanan, U., Soucy, T.A., Veiby, P.O., Smith, P.G., and Amidon, B. (2011). Inhibition of NEDD8-activating enzyme induces rereplication and apoptosis in human tumor cells consistent with deregulating CDT1 turnover.
Cancer Res 71, 3042-3051 .
10.1158/0008-5472.CAN-10-2122[64] Milhollen, M.A., Traore, T., Adams-Duffy, J., Thomas, M.P., Berger, A.J., Dang, L., Dick, L.R., Garnsey, J.J., Koenig, E., Langston, S.P.,
. (2010). MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-{kappa}B-dependent lymphoma.
Blood 116, 1515-1523 .
10.1182/blood-2010-03-272567[65] Moore, R., and Boyd, L. (2004). Analysis of RING finger genes required for embryogenesis in C. elegans.
Genesis 38, 1-12 .
10.1002/gene.10243[66] Nakayama, K.I., and Nakayama, K. (2006). Ubiquitin ligases: cell-cycle control and cancer.
Nat Rev Cancer 6, 369-381 .
10.1038/nrc1881[67] Nateri, A.S., Riera-Sans, L., Da Costa, C., and Behrens, A. (2004). The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling.
Science 303, 1374-1378 .
10.1126/science.1092880[68] Nawrocki, S.T., Griffin, P., Kelly, K.R., and Carew, J.S. (2012). MLN4924 : a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy.
Expert Opin Investig Drugs 21, 1563-1573 .
10.1517/13543784.2012.707192[69] Ohta, T., Michel, J.J., Schottelius, A.J., and Xiong, Y. (1999). ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity.
Mol Cell 3, 535-541 .
10.1016/S1097-2765(00)80482-7[70] Ozden, S.A., Ozyurt, H., Ozgen, Z., Kilinc, O., Oncel, M., Gul, A.E., Karadayi, N., Serakinci, N., Kan, B., and Orun, O. (2011). Prognostic role of sensitive-to-apoptosis gene expression in rectal cancer.
World J Gastroenterol 17, 4905-4910 .
10.3748/wjg.v17.i44.4905[71] Pan, Q., Qiao, F., Gao, C., Norman, B., Optican, L., and Zelenka, P.S. (2011). Cdk5 targets active Src for ubiquitin-dependent degradation by phosphorylating Src(S75).
Cell Mol Life Sci 68, 3425-3436 .
10.1007/s00018-011-0638-1[72] Persaud, A., Alberts, P., Amsen, E.M., Xiong, X., Wasmuth, J., Saadon, Z., Fladd, C., Parkinson, J., and Rotin, D. (2009). Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays.
Mol Syst Biol 5, 333.
10.1038/msb.2009.85[73] Peterson, T.R., Laplante, M., Thoreen, C.C., Sancak, Y., Kang, S.A., Kuehl, W.M., Gray, N.S., and Sabatini, D.M. (2009). DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival.
Cell 137, 873-886 .
10.1016/j.cell.2009.03.046[74] Querido, E., Blanchette, P., Yan, Q., Kamura, T., Morrison, M., Boivin, D., Kaelin, W.G., Conaway, R.C., Conaway, J.W., and Branton, P.E. (2001). Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex.
Genes Dev 15, 3104-3117 .
10.1101/gad.926401[75] Reynolds, P.J., Simms, J.R., and Duronio, R.J. (2008). Identifying determinants of cullin binding specificity among the three functionally different Drosophila melanogaster Roc proteins via domain swapping.
PLoS One 3, e2918.
10.1371/journal.pone.0002918[76] Sarikas, A., Hartmann, T., and Pan, Z.Q. (2011). The cullin protein family.
Genome Biol 12, 220.
10.1186/gb-2011-12-4-220[77] Sasaki, H., Yukiue, H., Kobayashi, Y., Moriyama, S., Nakashima, Y., Kaji, M., Fukai, I., Kiriyama, M., Yamakawa, Y., and Fujii, Y. (2001). Expression of the sensitive to apoptosis gene, SAG, as a prognostic marker in nonsmall cell lung cancer.
Int J Cancer 95, 375-377 .
10.1002/1097-0215(20011120)95:6<375::AID-IJC1066>3.0.CO;2-L[78] Sato, M., and Bremner, I. (1993). Oxygen free radicals and metallothionein.
Free Radic Biol Med 14, 325-337 .
10.1016/0891-5849(93)90029-T[79] Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy.
Nat Rev Cancer 3, 721-732 .
10.1038/nrc1187[80] Seol, J.H., Feldman, R.M.R., Zachariae, W.Z., Shevchenko, A., Correll, C.C., Lyapina, S., Chi, Y., Galova, M., Claypool, J., Sandmeyer, S.,
. (1999). Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34.
Genes & Dev 13, 1614-1626 .
10.1101/gad.13.12.1614[81] Shaulian, E., and Karin, M. (2002). AP-1 as a regulator of cell life and death.
Nat Cell Biol 4, E 131-136 .
10.1038/ncb0502-e131[82] Sherr, C.J., and Roberts, J.M. (1995). Inhibitors of mammalian G1 cyclin-dependent kinases.
Genes Dev 9, 1149-1163 .
10.1101/gad.9.10.1149[83] Sherr, C.J., and Roberts, J.M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression.
Genes Dev 13, 1501-1512 .
10.1101/gad.13.12.1501[84] Simo, S., Jossin, Y., and Cooper, J.A. (2010). Cullin 5 regulates cortical layering by modulating the speed and duration of Dab1-dependent neuronal migration.
J Neurosci 30, 5668-5676 .
10.1523/JNEUROSCI.0035-10.2010[85] Son, M.Y., Park, J.W., Kim, Y.S., Kang, S.W., Marshak, D.R., Park, W., and Bae, Y.S. (1999). Protein kinase CKII interacts with and phosphorylates the SAG protein containing ring-H2 finger motif.
Biochem Biophys Res Commun 263, 743-748 .
10.1006/bbrc.1999.1460[86] Soucy, T.A., Dick, L.R., Smith, P.G., Milhollen, M.A., and Brownell, J.E. (2010). The NEDD8 conjugation pathway and its relevance in cancer biology and therapy.
Genes Cancer 1, 708-716 .
10.1177/1947601910382898[87] Soucy, T.A., Smith, P.G., Milhollen, M.A., Berger, A.J., Gavin, J.M., Adhikari, S., Brownell, J.E., Burke, K.E., Cardin, D.P., Critchley, S.,
. (2009a). An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer.
Nature 458, 732-736 .
10.1038/nature07884[88] Soucy, T.A., Smith, P.G., and Rolfe, M. (2009b). Targeting NEDD8-activated cullin-RING ligases for the treatment of cancer.
Clin Cancer Res 15, 3912-3916 .
10.1158/1078-0432.CCR-09-0343[89] Sun, Y. (1990). Free radicals, antioxidant enzymes, and carcinogenesis.
Free Radic Biol Med 8, 583-599 .
10.1016/0891-5849(90)90156-D[90] Sun, Y. (1997). Induction of glutathione synthetase by 1,10-phenanthroline.
FEBS Lett 408, 16-20 .
10.1016/S0014-5793(97)00380-3[91] Sun, Y. (1999). Alteration of SAG mRNA in human cancer cell lines: requirement for the RING finger domain for apoptosis protection.
Carcinogenesis 20, 1899-1903 .
10.1093/carcin/20.10.1899[92] Sun, Y. (2000). Identification and characterization of genes responsive to apoptosis: Application of DNA chip technology and mRNA differential display.
Histol Histopathol 15, 1271-1284 .
[93] Sun, Y. (2003). Targeting E3 ubiquitin ligases for cancer therapy.
Cancer Biol Therapy 2, 623-629 .
10.4161/cbt.2.6.677[94] Sun, Y. (2006). E3 ubiquitin ligases as cancer targets and biomarkers.
Neoplasia 8, 645-654 .
10.1593/neo.06376[95] Sun, Y. (2008). RNF7 (RING finger protein-7).
Atlas Genet Cytogenet Oncol Haematol 12, 289-291 .
[96] Sun, Y., Bian, J., Wang, Y., and Jacobs, C. (1997). Activation of p53 transcriptional activity by 1,10-phenanthroline, a metal chelator and redox sensitive compound.
Oncogene 14, 385-393 .
10.1038/sj.onc.1200834[97] Sun, Y., Tan, M., Duan, H., and Swaroop, M. (2001). SAG/ROC/Rbx/Hrt, a zinc RING finger gene family: molecular cloning, biochemical properties, and biological functions.
Antioxid Redox Signal 3, 635-650 .
10.1089/15230860152542989[98] Sutterluty, H., Chatelain, E., Marti, A., Wirbelauer, C., Senften, M., Muller, U., and Krek, W. (1999). p 45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells.
Nature Cell Biol 1, 207-214 .
10.1038/12027[99] Swaroop, M., Bian, J., Aviram, M., Duan, H., Bisgaier, C.L., Loo, J.A., and Sun, Y. (1999). Expression, purification, and biochemical characterization of SAG, a RING finger redox sensitive protein.
Free Radicals Biol Med 27, 193-202 .
10.1016/S0891-5849(99)00078-7[100] Swaroop, M., Gosink, M., and Sun, Y. (2001). SAG/ROC2/Rbx2/Hrt2, a component of SCF E3 ubiquitin ligase: genomic structure, a splicing variant, and two family pseudogenes.
DNA Cell Biol 20, 425-434 .
10.1089/104454901750361488[101] Swaroop, M., Wang, Y., Miller, P., Duan, H., Jatkoe, T., Madore, S., and Sun, Y. (2000). Yeast homolog of human SAG/ROC2/Rbx2/ Hrt2 is essential for cell growth, but not for germination: Chip profiling implicates its role in cell cycle regulation.
Oncogene 19, 2855-2866 .
10.1038/sj.onc.1203635[102] Swords, R.T., Kelly, K.R., Smith, P.G., Garnsey, J.J., Mahalingam, D., Medina, E., Oberheu, K., Padmanabhan, S., O'Dwyer, M., Nawrocki, S.T.,
. (2010). Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia.
Blood 115, 3796-3800 .
10.1182/blood-2009-11-254862[103] Tan, M., Davis, S.W., Saunders, T.L., Zhu, Y., and Sun, Y. (2009). RBX1/ROC1 disruption results in early embryonic lethality due to proliferation failure, partially rescued by simultaneous loss of p27.
Proc Natl Acad Sci U S A 106, 6203-6208 .
10.1073/pnas.0812425106[104] Tan, M., Gallegos, J.R., Gu, Q., Huang, Y., Li, J., Jin, Y., Lu, H., and Sun, Y. (2006). SAG/ROC-SCFbeta-TrCP E3 ubiquitin ligase promotes pro-caspase-3 degradation as a mechanism of apoptosis protection.
Neoplasia 8, 1042-1054 .
10.1593/neo.06568[105] Tan, M., Gu, Q., He, H., Pamarthy, D., Semenza, G.L., and Sun, Y. (2008). SAG/ROC2/RBX2 is a HIF-1 target gene that promotes HIF-1alpha ubiquitination and degradation.
Oncogene 27, 1404-1411 .
10.1038/sj.onc.1210780[106] Tan, M., Li, Y., Yang, R., Xi, N., and Sun, Y. (2011a). Inactivation of SAG E3 ubiquitin ligase blocks embryonic stem cell differentiation and sensitizes leukemia cells to retinoid acid.
PLoS One 6, e27726.
10.1371/journal.pone.0027726[107] Tan, M., Zhao, Y., Kim, S.J., Liu, M., Jia, L., Saunders, T.L., Zhu, Y., and Sun, Y. (2011b). SAG/RBX2/ROC2 E3 Ubiquitin Ligase Is Essential for Vascular and Neural Development by Targeting NF1 for Degradation.
Dev Cell 21, 1062-1076 .
10.1016/j.devcel.2011.09.014[108] Tan, M., Zhu, Y., Kovacev, J., Zhao, Y., Pan, Z.Q., Spitz, D.R., and Sun, Y. (2010). Disruption of Sag/Rbx2/Roc2 induces radiosensitization by increasing ROS levels and blocking NF-kB activation in mouse embryonic stem cells.
Free Radic Biol Med 49976-983 .
10.1016/j.freeradbiomed.2010.05.030[109] Tsvetkov, L.M., Yeh, K.- H., Lee, S.- J., Sun, H., and Zhang, H. (1999). p27kip1ubiquitination and degradation is regulated by the SCFskp2 complex through phosphorylated Thr187 in p27.
Cur Biol 9, 661-664 .
10.1016/S0960-9822(99)80290-5[110] Vesterlund, M., Zadjali, F., Persson, T., Nielsen, M.L., Kessler, B.M., Norstedt, G., and Flores-Morales, A. (2011). The SOCS2 ubiquitin ligase complex regulates growth hormone receptor levels.
PLoS One 6, e25358.
10.1371/journal.pone.0025358[111] Viarengo, A., Burlando, B., Ceratto, N., and Panfoli, I. (2000). Antioxidant role of metallothioneins: a comparative overview.
Cell Mol Biol 46, 407-417 .
[112] Wei, D., Li, H., Yu, J., Sebolt, J.T., Zhao, L., Lawrence, T.S., Smith, P.G., Morgan, M.A., and Sun, Y. (2012). Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor.
Cancer Res 72, 282-293 .
10.1158/0008-5472.CAN-11-2866[113] Wei, D., Morgan, M.A., Sun, Y. (2012). Radiosensitization of cancer cells by inactivation of cullin-RING E3 ubiquitin ligases.
Transl Oncol 5, 305-312 .
[114] Wei, D., and Sun, Y. (2010). Small RING finger proteins RBX1 and RBX2 of SCF E3 ubiquitin ligases: the role in cancer and as cancer targets.
Genes Cancer 1, 700-707 .
10.1177/1947601910382776[115] Wei, W., Jin, J., Schlisio, S., Harper, J.W., and Kaelin, W.G., Jr. (2005). The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase.
Cancer Cell 8, 25-33 .
10.1016/j.ccr.2005.06.005[116] Welcker, M., and Clurman, B.E. (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation.
Nat Rev Cancer 8, 83-93 .
10.1038/nrc2290[117] Willems, A.R., Schwab, M., and Tyers, M. (2004). A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin.
Biochim Biophys Acta 1695, 133-170 .
10.1016/j.bbamcr.2004.09.027[118] Winston, J.T., Strack, P., Beer-Romero, P., Chu, C.Y., Elledge, S.J., and Harper, J.W. (1999). The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro.
Genes Dev 13, 270-283 .
10.1101/gad.13.3.270[119] Wrighton, K.H. (2011). Cell signalling: mTOR targets its own inhibitor.
Nat Rev Mol Cell Biol 12, 769.
10.1038/nrm3055[120] Wu, K., Fuchs, S.Y., Chen, A., Tan, P., Gomez, C., Ronai, Z., and Pan, Z.Q. (2000a). The SCF(HOS/beta-TRCP)-ROC1 E3 ubiquitin ligase utilizes two distinct domains within CUL1 for substrate targeting and ubiquitin ligation.
Mol Cell Biol 20 , 1382-1393 .
10.1128/MCB.20.4.1382-1393.2000[121] Wu, K., Fuchs, S.Y., Chen, G., Tan, P., Gomez, C., Ronai, Z., and Pan, Z.- Q. (2000b). The SCFHOS/b-TRCP-ROC1 E3 ubiquitin ligase utilizes two distinct domains within CUL1 for substrate targeting and ubiquitin ligation.
Mol. Cell. Biol . 20, 1382-1393 .
10.1128/MCB.20.4.1382-1393.2000[122] Yamaoka, S., Courtois, G., Bessia, C., Whiteside, S.T., Weil, R., Agou, F., Kirk, H.E., Kay, R.J., and Israel, A. (1998). Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation.
Cell 93, 1231-1240 .
10.1016/S0092-8674(00)81466-X[123] Yang, D., Tan, M., Wang, G., and Sun, Y. (2012). The p21-dependent radiosensitization of human breast cancer cells by MLN4924, an investigational inhibitor of NEDD8 activating enzyme.
PLoS One 7, e34079.
10.1371/journal.pone.0034079[124] Yang, E.S., Huh, Y.J., and Park, J.W. (2010). Knockdown of sensitive to apoptosis gene by small interfering RNA enhances the sensitivity of PC3 cells toward actinomycin D and etoposide.
Free Radic Res 44, 864-870 .
10.3109/10715762.2010.485996[125] Yang, E.S., and Park, J.W. (2006). Regulation of nitric oxide-induced apoptosis by sensitive to apoptosis gene protein.
Free Radic Res 40, 279-284 .
10.1080/10715760500511500[126] Yang, G.Y., Pang, L., Ge, H.L., Tan, M., Ye, W., Liu, X.H., Huang, F.P., Wu, D.C., Che, X.M., Song, Y.,
. (2001). Attenuation of ischemia-induced mouse brain injury by SAG, a redox- inducible antioxidant protein.
J Cereb Blood Flow Metab 21, 722-733 .
10.1097/00004647-200106000-00010[127] Yasukawa, T., Kamura, T., Kitajima, S., Conaway, R.C., Conaway, J.W., and Aso, T. (2008). Mammalian Elongin A complex mediates DNA-damage-induced ubiquitylation and degradation of Rpb1.
EMBO J 27, 3256-3266 .
10.1038/emboj.2008.249[128] Yoo, D.Y., Shin, B.N., Kim, I.H., Kim, D.W., Yoo, K.Y., Kim, W., Lee, C.H., Choi, J.H., Yoon, Y.S., Choi, S.Y.,
. (2012). Effects of sensitive to apoptosis gene protein on cell proliferation, neuroblast differentiation, and oxidative stress in the mouse dentate gyrus.
Neurochem Res 37, 495-502 .
10.1007/s11064-011-0634-8[129] Yu, X., Yu, Y., Liu, B., Luo, K., Kong, W., Mao, P., and Yu, X.F. (2003). Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex.
Science 302, 1056-1060 .
10.1126/science.1089591[130] Zhao, L., Yue, P., Lonial, S., Khuri, F.R., and Sun, S.Y. (2011a). The NEDD8-activating enzyme inhibitor, MLN4924, cooperates with TRAIL to augment apoptosis through facilitating c-FLIP degradation in head and neck cancer cells.
Mol Cancer Ther 10, 2415-2425 .
10.1158/1535-7163.MCT-11-0401[131] Zhao, Y., and Sun, Y. (2012). Targeting the mTOR-DEPTOR Pathway by CRL E3 Ubiquitin Ligases: Therapeutic Application.
Neoplasia 14, 360-367 .
[132] Zhao, Y., Xiong, X., Jia, L., and Sun, Y. (2012). Targeting Cullin-RING ligases by MLN4924 induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis.
Cell Death Dis 3, e386.
10.1038/cddis.2012.125[133] Zhao, Y., Xiong, X., and Sun, Y. (2011b). DEPTOR, an mTOR inhibitor, is a physiological substrate of SCFβTrCP E3 ubiquitin ligase and regulates survival and autophagy.
Mol Cell 44, 304-316.
10.1016/j.molcel.2011.08.029