Inactivation of Cdc42 in embryonic brain results in hydrocephalus with ependymal cell defects in mice

Xu Peng1(), Qiong Lin2, Yang Liu1, Yixin Jin1, Joseph E. Druso2, Marc A. Antonyak2, Jun-Lin Guan3, Richard A. Cerione2()

PDF(1553 KB)
PDF(1553 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (3) : 231-242. DOI: 10.1007/s13238-012-2098-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Inactivation of Cdc42 in embryonic brain results in hydrocephalus with ependymal cell defects in mice

  • Xu Peng1(), Qiong Lin2, Yang Liu1, Yixin Jin1, Joseph E. Druso2, Marc A. Antonyak2, Jun-Lin Guan3, Richard A. Cerione2()
Author information +
History +

Abstract

The establishment of a polarized cellular morphology is essential for a variety of processes including neural tube morphogenesis and the development of the brain. Cdc42 is a Ras-related GTPase that plays an essential role in controlling cell polarity through the regulation of the actin and microtubule cytoskeleton architecture. Previous studies have shown that Cdc42 plays an indispensable role in telencephalon development in earlier embryo developmental stage (before E12.5). However, the functions of Cdc42 in other parts of brain in later embryo developmental stage or in adult brain remain unclear. Thus, in order to address the role of Cdc42 in the whole brain in later embryo developmental stage or in adulthood, we used Cre/loxP technology to generate two lines of tissuespecific Cdc42-knock-out mice. Inactivation of Cdc42 was achieved in neuroepithelial cells by crossing Cdc42/ flox mice with Nestin- Cre mice and resulted in hydrocephalus, causing death to occur within the postnatal stage. Histological analyses of the brains from these mice showed that ependymal cell differentiation was disrupted, resulting in aqueductal stenosis. Deletion of Cdc42 in the cerebral cortex also induced obvious defects in interkinetic nuclear migration and hypoplasia. To further explore the role of Cdc42 in adult mice brain, we examined the effects of knocking-out Cdc42 in radial glial cells by crossing Cdc42/fl ox mice with human glial fi brillary acidic protein (GFAP)-Cre mice. Inactivation of Cdc42 in radial glial cells resulted in hydrocephalus and ependymal cell denudation. Taken together, these results highlight the importance of Cdc42 for ependymal cell differentiation and maintaining, and suggest that these functions likely contribute to the essential roles played by Cdc42 in the development of the brain.

Keywords

Cdc42 / small GTPase / neuron / glial cell / polarity / development

Cite this article

Download citation ▾
Xu Peng, Qiong Lin, Yang Liu, Yixin Jin, Joseph E. Druso, Marc A. Antonyak, Jun-Lin Guan, Richard A. Cerione. Inactivation of Cdc42 in embryonic brain results in hydrocephalus with ependymal cell defects in mice. Prot Cell, 2013, 4(3): 231‒242 https://doi.org/10.1007/s13238-012-2098-2

References

[1] Aoki, K., Nakamura, T., and Matsuda, M. (2004). Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factorinduced neurite outgrowth in PC12 cells. J Biol Chem 279, 713-719 .10.1074/jbc.M306382200
[2] Bokoch, G.M. (2003). Biology of the p21-activated kinases. Annu Rev Biochem 72, 743-781 .10.1146/annurev.biochem.72.121801.161742
[3] Cappello, S., Attardo, A., Wu, X., Iwasato, T., Itohara, S., Wilsch-Brauninger, M., Eilken, H.M., Rieger, M.A., Schroeder, T.T., Huttner, W.B., . (2006). The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat Neurosci 9, 1099-1107 .10.1038/nn1744
[4] Cerione, R.A. (2004). Cdc42: new roads to travel. Trends Cell Biol 14, 127-132 .10.1016/j.tcb.2004.01.008
[5] Chen, F., Ma, L., Parrini, M.C., Mao, X., Lopez, M., Wu, C., Marks, P.W., Davidson, L., Kwiatkowski, D.J., Kirchhausen, T., . (2000). Cdc42 is required for PIP(2)-induced actin polymerization and early development but not for cell viability. Curr Biol 10, 758-765 .10.1016/S0960-9822(00)00571-6
[6] Chen, L., Liao, G., Yang, L., Campbell, K., Nakafuku, M., Kuan, C.Y., and Zheng, Y. (2006). Cdc42 defi ciency causes Sonic hedgehogindependent holoprosencephaly. Proc Natl Acad Sci U S A 103, 16520-16525 .10.1073/pnas.0603533103
[7] Del Bigio, M.R. (1995). The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14, 1-13 .10.1002/glia.440140102
[8] Edwards, D.C., Sanders, L.C., Bokoch, G.M., and Gill, G.N. (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1, 253-259 .10.1038/12963
[9] Erickson, J.W., and Cerione, R.A. (2001). Multiple roles for Cdc42 in cell regulation. Curr Opin Cell Biol 13, 153-157 .10.1016/S0955-0674(00)00192-7
[10] Etienne-Manneville, S. (2004). Cdc42--the centre of polarity. J Cell Sci 117, 1291-1300 .10.1242/jcs.01115
[11] Etienne-Manneville, S., and Hall, A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106, 489-498 .10.1016/S0092-8674(01)00471-8
[12] Etienne-Manneville, S., and Hall, A. (2002). Rho GTPases in cell biology. Nature 420, 629-635 .10.1038/nature01148
[13] Etienne-Manneville, S., and Hall, A. (2003). Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr Opin Cell Biol 15, 67-72 .10.1016/S0955-0674(02)00005-4
[14] Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M., Yamaga, M., Kuroda, S., Matsuura, Y., Iwamatsu, A., Perez, F., and Kaibuchi, K. (2002). Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873-885 .10.1016/S0092-8674(02)00800-0
[15] Garvalov, B.K., Flynn, K.C., Neukirchen, D., Meyn, L., Teusch, N., Wu, X., Brakebusch, C., Bamburg, J.R., and Bradke, F. (2007). Cdc42 regulates cofi lin during the establishment of neuronal polarity. J Neurosci 27, 13117-13129 .10.1523/JNEUROSCI.3322-07.2007
[16] Gotta, M., Abraham, M.C., and Ahringer, J. (2001). CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr Biol 11, 482-488 .10.1016/S0960-9822(01)00142-7
[17] Gotz, M., and Huttner, W.B. (2005). The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6, 777-788 .10.1038/nrm1739
[18] Govek, E.E., Newey, S.E., and Van Aelst, L. (2005). The role of the Rho GTPases in neuronal development. Genes Dev 19, 1-49 .10.1101/gad.1256405
[19] Haigh, J.J., Morelli, P.I., Gerhardt, H., Haigh, K., Tsien, J., Damert, A., Miquerol, L., Muhlner, U., Klein, R., Ferrara, N., . (2003). Cortical and retinal defects caused by dosage- dependent reductions in VEGF-A paracrine signaling. Dev Biol 262, 225-241 .10.1016/S0012-1606(03)00356-7
[20] Hutterer, A., Betschinger, J., Petronczki, M., and Knoblich, J.A. (2004). Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Dev Cell 6, 845-854 .10.1016/j.devcel.2004.05.003
[21] Ibanez-Tallon, I., Gorokhova, S., and Heintz, N. (2002). Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet 11, 715-721 .10.1093/hmg/11.6.715
[22] Ibanez-Tallon, I. , Pagenstecher, A., Fliegauf, M., Olbrich, H., Kispert, A., Ketelsen, U.P., North, A., Heintz, N., and Omran, H. (2004). Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal fl ow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13, 2133-2141 .10.1093/hmg/ddh219
[23] Johnson, D.I., and Pringle, J.R. (1990). Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J Cell Biol 111, 143-152 .10.1083/jcb.111.1.143
[24] Kesavan, G., Sand, F.W., Greiner, T.U., Johansson, J.K., Kobberup, S., Wu, X., Brakebusch, C., and Semb, H. (2009). Cdc42-mediated tubulogenesis controls cell specifi cation. Cell 139, 791-801 .10.1016/j.cell.2009.08.049
[25] Kim, A.S., Kakalis, L.T., Abdul-Manan, N., Liu, G.A., and Rosen, M.K. (2000). Autoinhibition and activation mechanisms of the Wiskott- Aldrich syndrome protein. Nature 404, 151-158 .10.1038/35010088
[26] Kim, M.D., Kolodziej, P., and Chiba, A. (2002). Growth cone pathfi nding and filopodial dynamics are mediated separately by Cdc42 activation. J Neurosci 22, 1794-1806 .
[27] Klezovitch, O., Fernandez, T.E., Tapscott, S.J., and Vasioukhin, V. (2004). Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev 18, 559-571 .10.1101/gad.1178004
[28] Lakso, M., Pichel, J.G., Gorman, J.R., Sauer, B., Okamoto, Y., Lee, E., Alt, F.W., and Westphal, H. (1996). Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci U S A 93, 5860-5865 .10.1073/pnas.93.12.5860
[29] Linseman, D.A., and Loucks, F.A. (2008). Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front Biosci 13, 657-676 .10.2741/2710
[30] Lubarsky, B., and Krasnow, M.A. (2003). Tube morphogenesis: making and shaping biological tubes. Cell 112, 19-28 .10.1016/S0092-8674(02)01283-7
[31] Luo, L., Liao, Y.J., Jan, L.Y., and Jan, Y.N. (1994). Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8, 1787-1802 .10.1101/gad.8.15.1787
[32] Machesky, L.M., and Insall, R.H. (1999). Signaling to actin dynamics. J Cell Biol 146, 267-272 .10.1083/jcb.146.2.267
[33] Nagy, T., Wei, H., Shen, T.L., Peng, X., Liang, C.C., Gan, B., and Guan, J.L. (2007). Mammary epithelial-specific deletion of the focal adhesion kinase gene leads to severe lobulo-alveolar hypoplasia and secretory immaturity of the murine mammary gland. The Journal of biological chemistry 282, 31766-31776 .10.1074/jbc.M705403200
[34] Nechiporuk, T., Fernandez, T.E., and Vasioukhin, V. (2007). Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in Dlg5-/- mice. Dev Cell 13, 338-350 .10.1016/j.devcel.2007.07.017
[35] Nobes, C.D., and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53-62 .10.1016/0092-8674(95)90370-4
[36] Peng, X., Kraus, M.S., Wei, H., Shen, T.L., Pariaut, R., Alcaraz, A., Ji, G., Cheng, L., Yang, Q., Kotlikoff, M.I., . (2006). Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fi brosis in mice. J Clin Invest 116, 217-227 .10.1172/JCI24497
[37] Peng, X., Wu, X., Druso, J.E., Wei, H., Park, A.Y., Kraus, M.S., Alcaraz, A., Chen, J., Chien, S., Cerione, R.A., . (2008). Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. Proc Natl Acad Sci U S A 105, 6638-6643 .10.1073/pnas.0802319105
[38] Prehoda, K.E., Scott, J.A., Mullins, R.D., and Lim, W.A. (2000). Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290, 801-806 .10.1126/science.290.5492.801
[39] Sarner, S., Kozma, R., Ahmed, S., and Lim, L. (2000). Phosphatidylinositol 3-kinase, Cdc42, and Rac1 act downstream of Ras in integrin-dependent neurite outgrowth in N1E-115 neuroblastoma cells. Mol Cell Biol 20, 158-172 .10.1128/MCB.20.1.158-172.2000
[40] Schwamborn, J.C., and Puschel, A.W. (2004). The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci 7, 923-929 .10.1038/nn1295
[41] Shinjo, K., Koland, J.G., Hart, M.J., Narasimhan, V., Johnson, D.I., Evans, T., and Cerione, R.A. (1990). Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42. Proc Natl Acad Sci U S A 87, 9853-9857 .10.1073/pnas.87.24.9853
[42] Spassky, N., Merkle, F.T., Flames, N., Tramontin, A.D., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2005). Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25, 10-18 .10.1523/JNEUROSCI.1108-04.2005
[43] Spear, P.C., and Erickson, C.A. (2012). Interkinetic nuclear migration: a mysterious process in search of a function. Dev Growth Differ 54, 306-316 .10.1111/j.1440-169X.2012.01342.x
[44] Tronche, F., Kellendonk, C., Kretz, O., Gass, P., Anlag, K., Orban, P.C., Bock, R., Klein, R., and Schutz, G. (1999). Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23, 99-103 .10.1038/12703
[45] Wallingford, J.B. (2006). Planar cell polarity, ciliogenesis and neural tube defects. Hum Mol Genet 15 Spec No 2, R227-234 .10.1093/hmg/ddl216
[46] Wodarz, A., and Nathke, I. (2007). Cell polarity in development and cancer. Nat Cell Biol 9, 1016-1024 .10.1038/ncb433
[47] Wu, W.J., Erickson, J.W., Lin, R., and Cerione, R.A. (2000). The gamma-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature 405, 800-804 .10.1038/35015585
[48] Zhuo , L., Theis, M., Alvarez-Maya, I., Brenner, M., Willecke, K., and Messing, A. (2001). hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31, 85-94 .10.1002/gene.10008
AI Summary AI Mindmap
PDF(1553 KB)

Accesses

Citations

Detail

Sections
Recommended

/