Haploid embryonic stem cells: an ideal tool for mammalian genetic analyses

Linyu Shi, Hui Yang, Jinsong Li()

PDF(321 KB)
PDF(321 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (11) : 806-810. DOI: 10.1007/s13238-012-2096-4
MINI-REVIEW
MINI-REVIEW

Haploid embryonic stem cells: an ideal tool for mammalian genetic analyses

  • Linyu Shi, Hui Yang, Jinsong Li()
Author information +
History +

Abstract

Identification of the function of all genes in the mammalian genome is critical in understanding basic mechanisms of biology. However, the diploidy of mammalian somatic cells has greatly hindered efforts to elucidate the gene function in numerous biological processes by mutagenesis-based genetic approaches. Recently, mouse haploid embryonic stem (haES) cells have been successfully isolated from parthenogenetic and androgenetic embryos, providing an ideal tool for genetic analyses. In these studies, mouse haES cells have already shown that they could be used in cell-based forward or reverse genetic screenings and in generating gene-targeting via homologous recombination. In particular, haES cells from androgenetic embryos can be employed as novel, renewable form of fertilization agent for yielding live-born mice via injection into oocytes, thus showing the possibility that genetic analysis can be extended from cellular level to organism level.

Keywords

haploid embryonic stem cells / parthenogenetic embryos / androgenetic embryos / genetic screening / diploid / genomic imprinting

Cite this article

Download citation ▾
Linyu Shi, Hui Yang, Jinsong Li. Haploid embryonic stem cells: an ideal tool for mammalian genetic analyses. Prot Cell, 2012, 3(11): 806‒810 https://doi.org/10.1007/s13238-012-2096-4

References

[1] Carette, J.E., Guimaraes, C.P., Varadarajan, M., Park, A.S., Wuethrich, I., Godarova, A., Kotecki, M., Cochran, B.H., Spooner, E., Ploegh, H.L., . (2009). Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231-1235 .10.1126/science.1178955
[2] Carette, J.E., Guimaraes, C.P., Wuethrich, I., Blomen, V.A., Varadarajan, M., Sun, C., Bell, G., Yuan, B., Muellner, M.K., Nijman, S.M., . (2011). Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat Biotech 29, 542-546 .10.1038/nbt.1857
[3] Elling, U., Taubenschmid, J., Wirnsberger, G., O'Malley, R., Demers, S.P., Vanhaelen, Q., Shukalyuk, A.I., Schmauss, G., Schramek, D., Schnuetgen, F., . (2011). Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9, 563-574 .10.1016/j.stem.2011.10.012
[4] Erba, E., Ubezio, P., Broggini, M., Ponti, M., and D'Incalci, M. (1988). DNA damage, cytotoxic effect and cell-cycle perturbation of Hoechst 33342 on L1210 cells in vitro. Cytometry 9, 1-6 .10.1002/cyto.990090102
[5] Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156 .10.1038/292154a0
[6] Freed, J.J., and Mezger-Freed, L. (1970). Stable haploid cultured cell lines from frog embryos. Proc Natl Acad Sci U S A 65, 337-344 .10.1073/pnas.65.2.337
[7] Grimm, S. (2004). The art and design of genetic screens: mammalian culture cells. Nat Rev Genet 5, 179-189 .10.1038/nrg1291
[8] Ito, M., Kaneko-Ishino, T., Ishino, F., Matsuhashi, M., Yokoyama, M., and Katsuki, M. (1991). Fate of haploid parthenogenetic cells in mouse chimeras during development. J Exp Zool 257, 178-183 .10.1002/jez.1402570206
[9] Kaufman, M.H. (1978). Chromosome analysis of early postimplantation presumptive haploid parthenogenetic mouse embryos. J Embryol Exp Morphol 45, 85-91 .
[10] Kaufman, M.H., Robertson, E.J., Handyside, A.H., and Evans, M.J. (1983). Establishment of pluripotential cell lines from haploid mouse embryos. J Embryol Exp Morphol 73, 249-261 .
[11] Kotecki, M., Reddy, P.S., and Cochran, B.H. (1999). Isolation and characterization of a near-haploid human cell line.Exp Cell Res 252, 273-280 .10.1006/excr.1999.4656
[12] Latham, K.E., Akutsu, H., Patel, B., and Yanagimachi, R. (2002). Comparison of gene expression during preimplantation development between diploid and haploid mouse embryos. Biol Reprod 67, 386-392 .10.1095/biolreprod67.2.386
[13] Latham, K.E., Patel, B., Bautista, F.D., and Hawes, S.M. (2000). Effects of X chromosome number and parental origin on X-linked gene expression in preimplantation mouse embryos. Biol Reprod 63, 64-73 .10.1095/biolreprod63.1.64
[14] Leeb, M., and Wutz, A. (2011). Derivation of haploid embryonic stem cells from mouse embryos. Nature 479, 131-134 .10.1038/nature10448
[15] Li, G.P., White, K.L., and Bunch, T.D. (2004). Review of enucleation methods and procedures used in animal cloning: state of the art. Cloning Stem Cells 6, 5-13 .10.1089/15362300460743781
[16] Maside, C., Gil, M.A., Cuello, C., Sanchez-Osorio, J., Parrilla, I., Lucas, X., Caamano, J.N., Vazquez, J.M., Roca, J., and Martinez, E.A. (2011). Effects of Hoechst 33342 staining and ultraviolet irradiation on the developmental competence of in vitro-matured porcine oocytes. Theriogenology 76, 1667-1675 .10.1016/j.theriogenology.2011.06.032
[17] Paffoni, A., Brevini, T.A., Gandolfi, F., and Ragni, G. (2008). Parthenogenetic activation: biology and applications in the ART laboratory. Placenta 29 Suppl B, 121-125 .
[18] Schimenti, J. (2011). Haploid embryonic stem cells and the dominance of recessive traits. Cell Stem Cell 9, 488-489 .10.1016/j.stem.2011.11.006
[19] Sukov, W.R., Ketterling, R.P., Wei, S., Monaghan, K., Blunden, P., Mazzara, P., Raghavan, R., Oliviera, A.M., Wiktor, A.E., Keeney, G.L., . (2010). Nearly identical near-haploid karyotype in a peritoneal mesothelioma and a retroperitoneal malignant peripheral nerve sheath tumor. Cancer Genet Cytogenet 202, 123-128 .10.1016/j.cancergencyto.2010.07.120
[20] Tachibana, M., Sparman, M., Ramsey, C., Ma, H., Lee, H.S., Penedo, M.C., and Mitalipov, S.(2012). Generation of chimeric rhesus monkeys. Cell 148, 285-295 .10.1016/j.cell.2011.12.007
[21] Versieren, K., Heindryckx, B., Qian, C., Gerris, J., and De Sutter, P. (2012). Toxic effects of Hoechst staining and UV irradiation on preimplantation development of parthenogenetically activated mouse oocytes. Zygote , 1-9 .10.1017/S0967199412000251
[22] Wiellette, E., Grinblat, Y., Austen, M., Hirsinger, E., Amsterdam, A., Walker, C., Westerfield, M., and Sive, H. (2004). Combined haploid and insertional mutation screen in the zebrafish. Genesis 40, 231-240 .10.1002/gene.20090
[23] Yang, H., Shi, L., Wang, B.A., Liang, D., Zhong, C., Liu, W., Nie, Y., Liu, J., Zhao, J., Gao, X., . (2012). Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149, 605-617 .10.1016/j.cell.2012.04.002
[24] Yi, M., Hong, N., and Hong, Y. (2009). Generation of medaka fish haploid embryonic stem cells. Science 326, 430-433 .10.1126/science.1175151
[25] Zhang, X., Chen, J., Davis, B., and Kiechle, F. (1999). Hoechst 33342 induces apoptosis in HL-60 cells and inhibits topoisomerase I in vivo. Arch Pathol Lab Med 123, 921-927 .
[26] Zhang, X., and Kiechle, F.L. (1998). Hoechst 33342 induces apoptosis and alters tata box binding protein/DNA complexes in nuclei from BC3H-1 myocytes. Biochem Biophys Res Commun 248, 18-21 .10.1006/bbrc.1998.8906
AI Summary AI Mindmap
PDF(321 KB)

Accesses

Citations

Detail

Sections
Recommended

/