Proteolytic processing of SDF-1 α by matrix metalloproteinase-2 impairs CXCR4 signaling and reduces neural progenitor cell migration

Hui Peng1,2, Yumei Wu1,2, Zhiyuan Duan1,2,4, Pawel Ciborowski2, Jialin C. Zheng1,2,3()

PDF(433 KB)
PDF(433 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (11) : 875-882. DOI: 10.1007/s13238-012-2092-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Proteolytic processing of SDF-1 α by matrix metalloproteinase-2 impairs CXCR4 signaling and reduces neural progenitor cell migration

  • Hui Peng1,2, Yumei Wu1,2, Zhiyuan Duan1,2,4, Pawel Ciborowski2, Jialin C. Zheng1,2,3()
Author information +
History +

Abstract

Neural stem cells and neural progenitor cells (NPCs) exist throughout life and are mobilized to replace neurons, astrocytes and oligodendrocytes after injury. Stromal cell-derived factor 1 (SDF-1, now named CXCL12) and its receptor CXCR4, an α-chemokine receptor, are critical for NPC migration into damaged areas of the brain. Our previous studies demonstrated that immune activated and/or HIV-1-infected human monocyte-derived- macrophages (MDMs) induced a substantial increase of SDF-1 production by human astrocytes. However, matrix metalloproteinase (MMP)-2, a protein up-regulated in HIV-1-infected macrophages, is able to cleave four amino acids from the N-terminus of SDF-1, resulting in a truncated SDF-1(5-67). In this study, we investigate the diverse signaling and function induced by SDF-1 α and SDF-1(5-67) in human cortical NPCs. SDF-1(5-67) was generated by incubating human recombinant SDF-1α with MMP-2 followed by protein determination via mass spectrometry, Western blotting and ELISA. SDF-1α induced time-dependent phosphorylation of extracellular signal-regulated kinases (ERK) 1/2, Akt-1, and diminished cyclic adenosine monophosphate (cAMP). In contrast, SDF-1(5-67) failed to induce these signaling. SDF-1α activation of CXCR4 induced migration of NPCs, an effect that is dependent on ERK1/2 and Akt-1 pathways; whereas SDF-1(5-67) failed to induce NPC migration. This observation provides evidence that MMP-2 may affect NPC migration through post-translational processing of SDF-1α.

Keywords

proteolysis / chemokine / neurogenesis / and migration

Cite this article

Download citation ▾
Hui Peng, Yumei Wu, Zhiyuan Duan, Pawel Ciborowski, Jialin C. Zheng. Proteolytic processing of SDF-1 α by matrix metalloproteinase-2 impairs CXCR4 signaling and reduces neural progenitor cell migration. Prot Cell, 2012, 3(11): 875‒882 https://doi.org/10.1007/s13238-012-2092-8

References

[1] Aiuti, A., Webb, I.J., Bleul, C., Springer, T., and Gutierrez-Ramos, J.C. (1997). The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185, 111-120 .10.1084/jem.185.1.111
[2] Alvarez-Buylla, A., Herrera, D.G., and Wichterle, H. (2000). The subventricular zone: source of neuronal precursors for brain repair. Prog Brain Res 127, 1-11 .10.1016/S0079-6123(00)27002-7
[3] Bagri, A., Gurney, T., He, X., Zou, Y.R., Littman, D.R., Tessier-Lavigne, M., and Pleasure, S.J. (2002). The chemokine SDF1 regulates migration of dentate granule cells. Development 129, 4249-4260 .
[4] Bajetto, A., Bonavia, R., Barbero, S., Florio, T., Costa, A., and Schettini, G. (1999). Expression of chemokine receptors in the rat brain. Ann N Y Acad Sci 876, 201-209 .10.1111/j.1749-6632.1999.tb07640.x
[5] Belmadani, A., Tran, P.B., Ren, D., and Miller, R.J. (2006). Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 26, 3182-3191 .10.1523/JNEUROSCI.0156-06.2006
[6] Ceradini, D.J., Kulkarni, A.R., Callaghan, M.J., Tepper, O.M., Bastidas, N., Kleinman, M.E., Capla, J.M., Galiano, R.D., Levine, J.P., and Gurtner, G.C. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10, 858-864 .10.1038/nm1075
[7] Chi, L., Ke, Y., Luo, C., Li, B., Gozal, D., Kalyanaraman, B., and Liu, R. (2006). Motor neuron degeneration promotes neural progenitor cell proliferation, migration, and neurogenesis in the spinal cords of amyotrophic lateral sclerosis mice. Stem Cells 24, 34-43 .10.1634/stemcells.2005-0076
[8] Conant, K., McArthur, J.C., Griffin, D.E., Sjulson, L., Wahl, L.M., and Irani, D.N. (1999). Cerebrospinal fluid levels of MMP-2, 7, and 9 are elevated in association with human immunodeficiency virus dementia. Ann Neurol 46, 391-398 .10.1002/1531-8249(199909)46:3<391::AID-ANA15>3.0.CO;2-0
[9] Crump, M.P., Gong, J.H., Loetscher, P., Rajarathnam, K., Amara, A., Arenzana-Seisdedos, F., Virelizier, J.L., Baggiolini, M., Sykes, B.D., and Clark-Lewis, I. (1997). Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J 16, 6996-7007 .10.1093/emboj/16.23.6996
[10] Delgado, M.B., Clark-Lewis, I., Loetscher, P., Langen, H., Thelen, M., Baggiolini, M., and Wolf, M. (2001). Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes. Eur J Immunol 31, 699-707 .10.1002/1521-4141(200103)31:3<699::AID-IMMU699>3.0.CO;2-6
[11] Gage, F.H. (2000). Mammalian neural stem cells. Science 287, 1433-1438 .10.1126/science.287.5457.1433
[12] Gage, F.H. (2002). Neurogenesis in the adult brain. J Neurosci 22, 612-613 .
[13] Hatten, M.E. (1999). Central nervous system neuronal migration. Annu Rev Neurosci 22, 511-539 .10.1146/annurev.neuro.22.1.511
[14] Imitola, J., Raddassi, K., Park, K.I., Mueller, F.J., Nieto, M., Teng, Y.D., Frenkel, D., Li, J., Sidman, R.L., Walsh, C.A., . (2004). Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101, 18117-18122 .10.1073/pnas.0408258102
[15] Johnston, J.B., Jiang, Y., van Marle, G., Mayne, M.B., Ni, W., Holden, J., McArthur, J.C., and Power, C. (2000). Lentivirus infection in the brain induces matrix metalloproteinase expression: role of envelope diversity. J Virol 74, 7211-7220 .10.1128/JVI.74.16.7211-7220.2000
[16] Ke, Y., Chi, L., Xu, R., Luo, C., Gozal, D., and Liu, R. (2006). Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice. Stem Cells 24, 1011-1019 .10.1634/stemcells.2005-0249
[17] Klein, R.S., Rubin, J.B., Gibson, H.D., DeHaan, E.N., Alvarez-Hernandez, X., Segal, R.A., and Luster, A.D. (2001). SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development 128, 1971-1981 .
[18] Krathwohl, M.D., and Kaiser, J.L. (2004). HIV-1 promotes quiescence in human neural progenitor cells. J Infect Dis 190, 216-226 .10.1086/422008
[19] Langford, D., Sanders, V.J., Mallory, M., Kaul, M., and Masliah, E. (2002). Expression of stromal cell-derived factor 1alpha protein in HIV encephalitis. J Neuroimmunol 127, 115-126 .10.1016/S0165-5728(02)00068-1
[20] Lazarini, F., Tham, T.N., Casanova, P., Arenzana-Seisdedos, F., and Dubois-Dalcq, M. (2003). Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 42, 139-148 .10.1002/glia.10139
[21] Lu, M., Grove, E.A., and Miller, R.J. (2002). Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc Natl Acad Sci U S A 99, 7090-7095 .10.1073/pnas.092013799
[22] Ma, Q., Jones, D., Borghesani, P.R., Segal, R.A., Nagasawa, T., Kishimoto, T., Bronson, R.T., and Springer, T.A. (1998). Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4 and SDF 1 deficient mice. Proc Natl Acad Sci U S A 95, 9448-9453 .10.1073/pnas.95.16.9448
[23] McQuibban, G.A., Butler, G.S., Gong, J.H., Bendall, L., Power, C., Clark-Lewis, I., and Overall, C.M. (2001). Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 276, 43503-43508 .10.1074/jbc.M107736200
[24] Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, N., Kikutani, H., and Kishimoto, T. (1996). Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635-638 .10.1038/382635a0
[25] Peng, H., Erdmann, N., Whitney, N., Dou, H., Gorantla, S., Gendelman, H.E., Ghorpade, A., and Zheng, J. (2006). HIV-1-infected and/or immune activated macrophages regulate astrocyte SDF-1 production through IL-1beta. Glia 54, 619-629 .10.1002/glia.20409
[26] Peng, H., Huang, Y., Duan, Z., Erdmann, N., Xu, D., Herek, S., and Zheng, J. (2005). Cellular IAP1 regulates TRAIL-induced apoptosis in human fetal cortical neural progenitor cells. J Neurosci Res 82, 295-305 .10.1002/jnr.20629
[27] Peng, H., Huang, Y., Rose, J., Erichsen, D., Herek, S., Fujii, N., Tamamura, H., and Zheng, J. (2004). Stromal cell-derived factor 1 mediated CXCR4 signaling in rat and human cortical neural progenitor cells. Journal of Neuroscience Research 76, 35-50 .10.1002/jnr.20045
[28] Peng, H., Kolb, R., Kennedy, J.E., and Zheng, J. (2007). Differential expression of CXCL12 and CXCR4 during human fetal neural progenitor cell differentiation. J Neuroimmune Pharmacol 2, 251-258 .10.1007/s11481-007-9081-3
[29] Peng, H., Whitney, N., Wu, Y., Tian, C., Dou, H., Zhou, Y., and Zheng, J. (2008). HIV-1-infected and/or immune-activated macrophagesecreted TNF-alpha affects human fetal cortical neural progenitor cell proliferation and differentiation. Glia 56, 903-916 .10.1002/glia.20665
[30] Proost, P., Struyf, S., Schols, D., Durinx, C., Wuyts, A., Lenaerts, J.P., De Clercq, E., De Meester, I., and Van Damme, J. (1998). Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1alpha. FEBS Lett 432, 73-76 .10.1016/S0014-5793(98)00830-8
[31] Reiss, K., Mentlein, R., Sievers, J., and Hartmann, D. (2002). Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience 115, 295-305 .10.1016/S0306-4522(02)00307-X
[32] Rostasy, K., Egles, C., Chauhan, A., Kneissl, M., Bahrani, P., Yiannoutsos, C., Hunter, D.D., Nath, A., Hedreen, J.C., and Navia, B.A. (2003). SDF-1alpha is expressed in astrocytes and neurons in the AIDS dementia complex: an in vivo and in vitro study. J Neuropathol Exp Neurol 62, 617-626 .
[33] Sadir, R., Imberty, A., Baleux, F., and Lortat-Jacob, H. (2004). Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J Biol Chem 279, 43854-43860 .10.1074/jbc.M405392200
[34] Shioda, T., Kato, H., Ohnishi, Y., Tashiro, K., Ikegawa, M., Nakayama, E.E., Hu, H., Kato, A., Sakai, Y., Liu, H., . (1998). Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1alpha (SDF-1alpha) and SDF-1beta are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. Proc Natl Acad Sci U S A 95, 6331-6336 .10.1073/pnas.95.11.6331
[35] Sun, L., Lee, J., and Fine, H.A. (2004). Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Invest 113, 1364-1374 .
[36] Takeuchi, H., Natsume, A., Wakabayashi, T., Aoshima, C., Shimato, S., Ito, M., Ishii, J., Maeda, Y., Hara, M., Kim, S.U., . (2007). Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett 426, 69-74 .10.1016/j.neulet.2007.08.048
[37] Tran, P.B., Ren, D., Veldhouse, T.J., and Miller, R.J. (2004). Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res 76, 20-34 .10.1002/jnr.20001
[38] Valenzuela-Fernandez, A., Planchenault, T., Baleux, F., Staropoli, I., Le-Barillec, K., Leduc, D., Delaunay, T., Lazarini, F., Virelizier, J.L., Chignard, M., . (2002). Leukocyte Elastase Negatively Regulates Stromal Cell-derived Factor-1 (SDF-1)/CXCR4 Binding and Functions by Amino-terminal Processing of SDF- 1 and CXCR4. J Biol Chem 277, 15677-15689 .10.1074/jbc.M111388200
[39] Vergote, D., Butler, G.S., Ooms, M., Cox, J.H., Silva, C., Hollenberg, M.D., Jhamandas, J.H., Overall, C.M., and Power, C. (2006). Proteolytic processing of SDF-1alpha reveals a change in receptor specificity mediating HIV-associated neurodegeneration. Proc Natl Acad Sci U S A 103, 19182-19187 .10.1073/pnas.0604678103
[40] Weiss, S., Reynolds, B.A., Vescovi, A.L., Morshead, C., Craig, C.G., and van der Kooy, D. (1996). Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19, 387-393 .10.1016/S0166-2236(96)10035-7
[41] Wu, Y., Chen, Q., Peng, H., Dou, H., Zhou, Y., Huang, Y., and Zheng, J. (2012). Directed migration of human nueral progenitor cells to interleukin-1 β is promoted by chemokines stromal cell-derived factor-1 and monocyte chemotactic factor-1 in mouse brains. Translational Neurodegeneration 31, 15.10.1186/2047-9158-1-15
[42] Zhang, K., McQuibban, G.A., Silva, C., Butler, G.S., Johnston, J.B., Holden, J., Clark-Lewis, I., Overall, C.M., and Power, C. (2003). HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nat Neurosci 6, 1064-1071 .10.1038/nn1127
[43] Zheng, J., Thylin, M., Ghorpade, A., Xiong, H., Persidsky, Y., Cotter, R., Niemann, D., Che, M., Zeng, Y., Gelbard, H., . (1999). Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J Neuroimmunol 98, 185-200 .10.1016/S0165-5728(99)00049-1
[44] Zhu, B., Xu, D., Deng, X., Chen, Q., Huang, Y., Peng, H., Li, Y., Jia, B., Thoreson, W.B., Ding, W., . (2012). CXCL12 Enhances Human Neural Progenitor Cell Survival through a CXCR7- and CXCR4- mediated Endocytotic Signaling Pathway. Stem Cells . (In Press). 10.1002/stem.1239
[45] Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I., and Littman, D.R. (1998). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595-599 .10.1038/31269
AI Summary AI Mindmap
PDF(433 KB)

Accesses

Citations

Detail

Sections
Recommended

/