Specification of functional neurons and glia from human pluripotent stem cells

Yuan Jiang, Mei-Jiang Zhang, Bao-Yang Hu()

PDF(385 KB)
PDF(385 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (11) : 818-825. DOI: 10.1007/s13238-012-2086-6
REVIEW
REVIEW

Specification of functional neurons and glia from human pluripotent stem cells

  • Yuan Jiang, Mei-Jiang Zhang, Bao-Yang Hu()
Author information +
History +

Abstract

Human pluripotent stem cells (PSCs) such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) hold great promise in regenerative medicine as they are an important source of functional cells for potential cell replacement. These human PSCs, similar to their counterparts of mouse, have the full potential to give rise to any type of cells in the body. However, for the promise to be fulfilled, it is necessary to convert these PSCs into functional specialized cells. Using the developmental principles of neural lineage specification, human ESCs and iPSCs have been effectively differentiated to regional and functional specific neurons and glia, such as striatal gama-aminobutyric acid (GABA)-ergic neurons, spinal motor neurons and myelin sheath forming oligodendrocytes. The human PSCs, in general differentiate after the similar developmental program as that of the mouse: they use the same set of cell signaling to tune the cell fate and they share a conserved transcriptional program that directs the cell fate transition. However, the human PSCs, unlike their counterparts of mouse, tend to respond divergently to the same set of extracellular signals at certain stages of differentiation, which will be a critical consideration to translate the animal model based studies to clinical application.

Keywords

pluripotent stem cells / embryonic stem cells / induced pluripotent stem cells / neural stem cell / regenerative medicine / cell transplantation

Cite this article

Download citation ▾
Yuan Jiang, Mei-Jiang Zhang, Bao-Yang Hu. Specification of functional neurons and glia from human pluripotent stem cells. Prot Cell, 2012, 3(11): 818‒825 https://doi.org/10.1007/s13238-012-2086-6

References

[1] Ambasudhan, R., Talantova, M., Coleman, R., Yuan, X., Zhu, S., Lipton, S.A., and Ding, S. (2011). Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9, 113-118 .10.1016/j.stem.2011.07.002
[2] Brons, I.G., Smithers, L.E., Trotter, M.W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S.M., Howlett, S.K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R.A., . (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191-195 .10.1038/nature05950
[3] Caiazzo, M., Dell'Anno, M.T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., Sotnikova, T.D., Menegon, A., Roncaglia, P., Colciago, G., . (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224-227 .10.1038/nature10284
[4] Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sadelain, M., and Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27, 275-280 .10.1038/nbt.1529
[5] Di Giorgio, F.P., Boulting, G.L., Bobrowicz, S., and Eggan, K.C. (2008). Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3, 637-648 .10.1016/j.stem.2008.09.017
[6] Dimos, J.T., Rodolfa, K.T., Niakan, K.K., Weisenthal, L.M., Mitsumoto, H., Chung, W., Croft, G.F., Saphier, G., Leibel, R., Goland, R., . (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218-1221 .10.1126/science.1158799
[7] Du, Z.W., Li, X.J., Nguyen, G.D., and Zhang, S.C. (2006). Induced expression of Olig2 is sufficient for oligodendrocyte specification but not for motoneuron specification and astrocyte repression. Mol Cell Neurosci 33, 371-380 .10.1016/j.mcn.2006.08.007
[8] Ebert, A.D., Yu, J., Rose, F.F., Jr., Mattis, V.B., Lorson, C.L., Thomson, J.A., and Svendsen, C.N. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277-280 .10.1038/nature07677
[9] Fancy, S.P., Chan, J.R., Baranzini, S.E., Franklin, R.J., and Rowitch, D.H. (2011). Myelin regeneration: a recapitulation of development? Annu Rev Neurosci 34, 21-43 .10.1146/annurev-neuro-061010-113629
[10] Han, D.W., Tapia, N., Hermann, A., Hemmer, K., Hoing, S., Arauzo-Bravo, M.J., Zaehres, H., Wu, G., Frank, S., Moritz, S., . (2012). Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10, 465-472 .10.1016/j.stem.2012.02.021
[11] Hu, B.Y., Du, Z.W., Li, X.J., Ayala, M., and Zhang, S.C. (2009a). Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development 136, 1443-1452 .10.1242/dev.029447
[12] Hu, B.Y., Du, Z.W., and Zhang, S.C. (2009b). Differentiation of human oligodendrocytes from pluripotent stem cells, 1614-1622 .10.1038/nprot.2009.186
[13] Hu, B.Y., Weick, J.P., Yu, J., Ma, L.X., Zhang, X.Q., Thomson, J.A., and Zhang, S.C. (2010). Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107, 4335-4340 .10.1073/pnas.0910012107
[14] Hu, B.Y., and Zhang, S.C. (2009). Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc 4, 1295-1304 .10.1038/nprot.2009.127
[15] Kim, J., Efe, J.A., Zhu, S., Talantova, M., Yuan, X., Wang, S., Lipton, S.A., Zhang, K., and Ding, S. (2011). Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108, 7838-7843 .10.1073/pnas.1103113108
[16] Krencik, R., Weick, J.P., Liu, Y., Zhang, Z.J., and Zhang, S.C. (2011). Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol 29, 528-534 .10.1038/nbt.1877
[17] Lanner, F., and Rossant, J. (2010). The role of FGF/Erk signaling in pluripotent cells. Development 137, 3351-3360 .10.1242/dev.050146
[18] LaVaute, T.M., Yoo, Y.D., Pankratz, M.T., Weick, J.P., Gerstner, J.R., and Zhang, S.C. (2009). Regulation of neural specification from human embryonic stem cells by BMP and FGF. Stem Cells 27, 1741-1749 .10.1002/stem.99
[19] Lee, G., Papapetrou, E.P., Kim, H., Chambers, S.M., Tomishima, M.J., Fasano, C.A., Ganat, Y.M., Menon, J., Shimizu, F., Viale, A., . (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402-406 .10.1038/nature08320
[20] Li, X.J., Du, Z.W., Zarnowska, E.D., Pankratz, M., Hansen, L.O., Pearce, R.A., and Zhang, S.C. (2005). Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23, 215-221 .10.1038/nbt1063
[21] Lujan, E., Chanda, S., Ahlenius, H., Sudhof, T.C., and Wernig, M. (2012). Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 109, 2527-2532 .10.1073/pnas.1121003109
[22] Ma, L., Hu, B., Liu, Y., Vermilyea, S.C., Liu, H., Gao, L., Sun, Y., Zhang, X., and Zhang, S.C. (2012). Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 10, 455-464 .10.1016/j.stem.2012.01.021
[23] Marchetto, M.C., Muotri, A.R., Mu, Y., Smith, A.M., Cezar, G.G., and Gage, F.H. (2008). Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3, 649-657 .10.1016/j.stem.2008.10.001
[24] Marro, S., Pang, Z.P., Yang, N., Tsai, M.C., Qu, K., Chang, H.Y., Sudhof, T.C., and Wernig, M. (2011). Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell 9, 374-382 .10.1016/j.stem.2011.09.002
[25] Okita, K., and Yamanaka, S. (2006). Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Curr Stem Cell Res Ther 1, 103-111 .10.2174/157488806775269061
[26] Osafune, K., Caron, L., Borowiak, M., Martinez, R.J., Fitz-Gerald, C.S., Sato, Y., Cowan, C.A., Chien, K.R., and Melton, D.A. (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26, 313-315 .10.1038/nbt1383
[27] Pal, U., Chaudhury, S., and Sarkar, P.K. (1999). Tubulin and glial fibrillary acidic protein gene expression in developing fetal human brain at midgestation. Neurochemical research 24, 637-641 .10.1023/A:1021096224161
[28] Pang, Z.P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D.R., Yang, T.Q., Citri, A., Sebastiano, V., Marro, S., Sudhof, T.C., . (2011). Induction of human neuronal cells by defined transcription factors. Nature 476, 220-223 .
[29] Pankratz, M.T., Li, X.J., Lavaute, T.M., Lyons, E.A., Chen, X., and Zhang, S.C. (2007). Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25, 1511-1520 .10.1634/stemcells.2006-0707
[30] Pfisterer, U., Kirkeby, A., Torper, O., Wood, J., Nelander, J., Dufour, A., Bjorklund, A., Lindvall, O., Jakobsson, J., and Parmar, M. (2011). Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108, 10343-10348 .10.1073/pnas.1105135108
[31] Qiang, L., Fujita, R., Yamashita, T., Angulo, S., Rhinn, H., Rhee, D., Doege, C., Chau, L., Aubry, L., Vanti, W.B., . (2011). Directed conversion of Alzheimer's disease patient skin fibroblasts into functional neurons. Cell 146, 359-371 .10.1016/j.cell.2011.07.007
[32] Rao, M. (2004). Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Dev Biol 275, 269-286 .10.1016/j.ydbio.2004.08.013
[33] Ring, K.L., Tong, L.M., Balestra, M.E., Javier, R., Andrews-Zwilling, Y., Li, G., Walker, D., Zhang, W.R., Kreitzer, A.C., and Huang, Y. (2012). Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11, 100-109 .10.1016/j.stem.2012.05.018
[34] Rossant, J. (2008). Stem cells and early lineage development. Cell 132, 527-531 .10.1016/j.cell.2008.01.039
[35] Sato, N., Sanjuan, I.M., Heke, M., Uchida, M., Naef, F., and Brivanlou, A.H. (2003). Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 260, 404-413 .10.1016/S0012-1606(03)00256-2
[36] Sheng, C., Zheng, Q., Wu, J., Xu, Z., Wang, L., Li, W., Zhang, H., Zhao, X.Y., Liu, L., Wang, Z., . (2012). Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. Cell Res 22, 208-218 .10.1038/cr.2011.175
[37] Son, E.Y., Ichida, J.K., Wainger, B.J., Toma, J.S., Rafuse, V.F., Woolf, C.J., and Eggan, K. (2011). Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9, 205-218 .10.1016/j.stem.2011.07.014
[38] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872 .10.1016/j.cell.2007.11.019
[39] Tesar, P.J., Chenoweth, J.G., Brook, F.A., Davies, T.J., Evans, E.P., Mack, D.L., Gardner, R.L., and McKay, R.D. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196-199 .10.1038/nature05972
[40] Thier, M., Worsdorfer, P., Lakes, Y.B., Gorris, R., Herms, S., Opitz, T., Seiferling, D., Quandel, T., Hoffmann, P., Nothen, M.M., . (2012). Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10, 473-479 .10.1016/j.stem.2012.03.003
[41] Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 .10.1126/science.282.5391.1145
[42] Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., and Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041 .10.1038/nature08797
[43] Wichterle, H., Turnbull, D.H., Nery, S., Fishell, G., and Alvarez-Buylla, A. (2001). In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759-3771 .
[44] Wilkinson, M., Hume, R., Strange, R., and Bell, J.E. (1990). Glial and neuronal differentiation in the human fetal brain 9-23 weeks of gestation. Neuropathol Appl Neurobiol 16, 193-204 .10.1111/j.1365-2990.1990.tb01156.x
[45] Wright, L.S., Prowse, K.R., Wallace, K., Linskens, M.H., and Svendsen, C.N. (2006). Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro. Exp Cell Res 312, 2107-2120 .10.1016/j.yexcr.2006.03.012
[46] Wu, H., Xu, J., Pang, Z.P., Ge, W., Kim, K.J., Blanchi, B., Chen, C., Sudhof, T.C., and Sun, Y.E. (2007). Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc Natl Acad Sci U S A 104, 13821-13826 .10.1073/pnas.0706199104
[47] Xu, R.H., Chen, X., Li, D.S., Li, R., Addicks, G.C., Glennon, C., Zwaka, T.P., and Thomson, J.A. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20, 1261-1264 .10.1038/nbt761
[48] Yoo, A.S., Sun, A.X., Li, L., Shcheglovitov, A., Portmann, T., Li, Y., Lee-Messer, C., Dolmetsch, R.E., Tsien, R.W., and Crabtree, G.R. (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228-231 .10.1038/nature10323
[49] Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., . (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920 .10.1126/science.1151526
[50] Zhang, S.C., Wernig, M., Duncan, I.D., Brustle, O., and Thomson, J.A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19, 1129-1133 .10.1038/nbt1201-1129
[51] Zhang, X., Huang, C.T., Chen, J., Pankratz, M.T., Xi, J., Li, J., Yang, Y., Lavaute, T.M., Li, X.J., Ayala, M., . (2010). Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7,90 -100 .10.1016/j.stem.2010.04.017
AI Summary AI Mindmap
PDF(385 KB)

Accesses

Citations

Detail

Sections
Recommended

/