MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-λ1

Yongkui Li1,2, Jiajia Xie1, Xiupeng Xu1, Jun Wang1, Fang Ao1, Yushun Wan1, Ying Zhu1()

PDF(1024 KB)
PDF(1024 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (2) : 130-141. DOI: 10.1007/s13238-012-2081-y
RESEARCH ARTICLE
RESEARCH ARTICLE

MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-λ1

  • Yongkui Li1,2, Jiajia Xie1, Xiupeng Xu1, Jun Wang1, Fang Ao1, Yushun Wan1, Ying Zhu1()
Author information +
History +

Abstract

Interferon (IFN)-mediated pathways are a crucial part of the cellular response against viral infection. Type III IFNs, which include IFN-λ1, 2 and 3, mediate antiviral responses similar to Type I IFNs via a distinct receptor complex. IFN-λ1 is more effective than the other two members. Transcription of IFN-λ1 requires activation of IRF3/7 and nuclear factor-kappa B (NF-κB), similar to the transcriptional mechanism of Type I IFNs. Using reporter assays, we discovered that viral infection induced both IFN-λ1 promoter activity and that of the 3'-untranslated region (UTR), indicating that IFN-λ1 expression is also regulated at the post-transcriptional level. After analysis with microRNA (miRNA) prediction programs and 3'UTR targeting site assays, the miRNA- 548 family, including miR-548b-5p, miR-548c-5p, miR-548i, miR-548j, and miR-548n, was identified to target the 3'UTR of IFN-λ1. Further study demonstrated that miRNA-548 mimics down-regulated the expression of IFN-λ1. In contrast, their inhibitors, the complementary RNAs, enhanced the expression of IFN-λ1 and IFN-stimulated genes. Furthermore, miRNA-548 mimics promoted infection by enterovirus-71 (EV71) and vesicular stomatitis virus (VSV), whereas their inhibitors significantly suppressed the replication of EV71 and VSV. Endogenous miRNA-548 levels were suppressed during viral infection. In conclusion, our results suggest that miRNA-548 regulates host antiviral response via direct targeting of IFN-λ1, which may offer a potential candidate for antiviral therapy.

Keywords

microRNA-548 / interferon-λ1 / viral infection / antiviral response

Cite this article

Download citation ▾
Yongkui Li, Jiajia Xie, Xiupeng Xu, Jun Wang, Fang Ao, Yushun Wan, Ying Zhu. MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-λ1. Prot Cell, 2013, 4(2): 130‒141 https://doi.org/10.1007/s13238-012-2081-y

References

[1] Almeida, G.M., de Oliveira, D.B., Magalhaes, C.L., Bonjardim, C.A., Ferreira, P.C., and Kroon, E.G. (2008). Antiviral activity of type I interferons and interleukins 29 and 28a (type III interferons) against Apeu virus. Antiviral Res 80, 302-308. 10.1016/j.antiviral.2008.06.016
[2] Ank, N., West, H., Bartholdy, C., Eriksson, K., Thomsen, A.R., and Paludan, S.R. (2006). Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol 80, 4501-4509. 10.1128/JVI.80.9.4501-4509.2006
[3] Bandi, P., Pagliaccetti, N.E., and Robek, M.D. (2010). Inhibition of type III interferon activity by orthopoxvirus immunomodulatory proteins. J Interferon Cytokine Res 30, 123-134. 10.1089/jir.2009.0049
[4] Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. 10.1016/S0092-8674(04)00045-5
[5] Bigger, C.B., Brasky, K.M., and Lanford, R.E. (2001). DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J Virol 75, 7059-7066. 10.1128/JVI.75.15.7059-7066.2001
[6] Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., . (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33, e179.10.1093/nar/gni178
[7] Conklin, D.C., Grant, F.J., Rixon, M.W., and Kindsvogel, W. (2002). Interferon-?. U.S. Patent 6329175.
[8] Doench, J.G., and Sharp, P.A. (2004). Specificity of microRNA target selection in translational repression. Genes Dev 18, 504-511. 10.1101/gad.1184404
[9] Farber, J.M. (1990). A macrophage mRNA selectively induced by gamma-interferon encodes a member of the platelet factor 4 family of cytokines. Proc Natl Acad Sci U S A 87, 5238-5242. 10.1073/pnas.87.14.5238
[10] Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., . (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916-920. 10.1038/nature05732
[11] Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., Ruvkun, G., and Mello, C.C. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23-34. 10.1016/S0092-8674(01)00431-7
[12] Hong, S.H., Cho, O., Kim, K., Shin, H.J., Kotenko, S.V., and Park, S. (2007). Effect of interferon-lambda on replication of hepatitis B virus in human hepatoma cells. Virus Res 126, 245-249. 10.1016/j.virusres.2007.03.006
[13] Huang, J., Wang, Y., Guo, Y., and Sun, S. (2010). Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology 52, 60-70. 10.1002/hep.23660
[14] Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., and Zamore, P.D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834-838. 10.1126/science.1062961
[15] Hutvagner, G., and Zamore, P.D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056-2060. 10.1126/science.1073827
[16] Ji, Y., He, Y., Liu, L., and Zhong, X. (2010). MiRNA-26b regulates the expression of cyclooxygenase-2 in desferrioxamine-treated CNE cells. FEBS Lett 584, 961-967. 10.1016/j.febslet.2010.01.036
[17] Kotenko, S.V., Gallagher, G., Baurin, V.V., Lewis-Antes, A., Shen, M., Shah, N.K., Langer, J.A., Sheikh, F., Dickensheets, H., and Donnelly, R.P. (2003). IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4, 69-77. 10.1038/ni875
[18] LaFleur, D.W., Nardelli, B., Tsareva, T., Mather, D., Feng, P., Semenuk, M., Taylor, K., Buergin, M., Chinchilla, D., Roshke, V., . (2001). Interferon-kappa, a novel type I interferon expressed in human keratinocytes. J Biol Chem 276, 39765-39771. 10.1074/jbc.M102502200
[19] Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., . (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419. 10.1038/nature01957
[20] Lei, X., Liu, X., Ma, Y., Sun, Z., Yang, Y., Jin, Q., He, B., and Wang, J. (2010). The 3C protein of enterovirus 71 inhibits retinoid acid-inducible gene I-mediated interferon regulatory factor 3 activation and type I interferon responses. J Virol 84, 8051-8061. 10.1128/JVI.02491-09
[21] Lei, X., Sun, Z., Liu, X., Jin, Q., He, B., and Wang, J. (2011). Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by Toll-like receptor 3. J Virol 85, 8811-8818. 10.1128/JVI.00447-11
[22] Li, X.D., Sun, L., Seth, R.B., Pineda, G., and Chen, Z.J. (2005). Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A 102, 17717-17722. 10.1073/pnas.0508531102
[23] Lin, S., Cheung, W.K., Chen, S., Lu, G., Wang, Z., Xie, D., Li, K., Lin, M.C., and Kung, H.F. (2010). Computational identification and characterization of primate-specific microRNAs in human genome. Comput Biol Chem 34, 232-241. 10.1016/j.compbiolchem.2010.08.001
[24] Loo, Y.M., Owen, D.M., Li, K., Erickson, A.K., Johnson, C.L., Fish, P.M., Carney, D.S., Wang, T., Ishida, H., Yoneyama, M., . (2006). Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sci U S A 103, 6001-6006. 10.1073/pnas.0601523103
[25] Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303, 95-98. 10.1126/science.1090599
[26] Maher, S.G., Sheikh, F., Scarzello, A.J., Romero-Weaver, A.L., Baker, D.P., Donnelly, R.P., and Gamero, A.M. (2008). IFNalpha and IFNlambda differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biol Ther 7, 1109-1115. 10.4161/cbt.7.7.6192
[27] Marukian, S., Andrus, L., Sheahan, T.P., Jones, C.T., Charles, E.D., Ploss, A., Rice, C.M., and Dustin, L.B. (2011). Hepatitis C virus induces interferon-lambda and interferon-stimulated genes in primary liver cultures. Hepatology 54, 1913-1923. 10.1002/hep.24580
[28] Milliken, E.L., Zhang, X., Flask, C., Duerk, J.L., MacDonald, P.N., and Keri, R.A. (2005). EB1089, a vitamin D receptor agonist, reduces proliferation and decreases tumor growth rate in a mouse model of hormone-induced mammary cancer. Cancer Lett 229, 205-215. 10.1016/j.canlet.2005.06.044
[29] Muller, U., Steinhoff, U., Reis, L.F., Hemmi, S., Pavlovic, J., Zinkernagel, R.M., and Aguet, M. (1994). Functional role of type I and type II interferons in antiviral defense. Science 264, 1918-1921. 10.1126/science.8009221
[30] Osterlund, P.I., Pietila, T.E., Veckman, V., Kotenko, S.V., and Julkunen, I. (2007). IFN regulatory factor family members differentially regulate the expression of type III IFN (IFN-lambda) genes. J Immunol 179, 3434-3442.
[31] Park, H., Serti, E., Eke, O., Muchmore, B., Prokunina-Olsson, L., Capone, S., Folgori, A., and Rehermann, B. (2012). IL-29 is the dominant type III interferon produced by hepatocytes during acute hepatitis C virus infection. Hepatology . (In Press).10.1002/hep.25897
[32] Pasquinelli, C., Lauré, F., Chatenoud, L., Beaurin, G., Gazengel, C., Bismuth, H., Degos, F., Tiollais, P., Bach, J., and Bréchot, C. (1986). Hepatitis B virus DNA in mononuclear blood cells. A frequent event in hepatitis B surface antigen-positive and-negative patients with acute and chronic liver disease. J Hepatol 3, 95-103. 10.1016/S0168-8278(86)80152-0
[33] Pestka, S. (1997). The human interferon-alpha species and hybrid proteins. Semin Oncol 24, S9-4-S9-17.
[34] Piriyapongsa, J., and Jordan, I.K. (2007). A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One 2, e203.10.1371/journal.pone.0000203
[35] Robek, M.D., Boyd, B.S., and Chisari, F.V. (2005). Lambda interferon inhibits hepatitis B and C virus replication. J Virol 79, 3851-3854. 10.1128/JVI.79.6.3851-3854.2005
[36] Sarasin-Filipowicz, M., Oakeley, E.J., Duong, F.H., Christen, V., Terracciano, L., Filipowicz, W., and Heim, M.H. (2008). Interferon signaling and treatment outcome in chronic hepatitis C. Proc Natl Acad Sci U S A 105, 7034-7039. 10.1073/pnas.0707882105
[37] Saxena, S., Jonsson, Z.O., and Dutta, A. (2003). Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem 278, 44312-44319. 10.1074/jbc.M307089200
[38] Sheppard, P., Kindsvogel, W., Xu, W., Henderson, K., Schlutsmeyer, S., Whitmore, T.E., Kuestner, R., Garrigues, U., Birks, C., Roraback, J., . (2003). IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4, 63-68. 10.1038/ni873
[39] Siren, J., Pirhonen, J., Julkunen, I., and Matikainen, S. (2005). IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29. J Immunol 174, 1932-1937.
[40] Strillacci, A., Griffoni, C., Sansone, P., Paterini, P., Piazzi, G., Lazzarini, G., Spisni, E., Pantaleo, M.A., Biasco, G., and Tomasi, V. (2009). MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res 315, 1439-1447. 10.1016/j.yexcr.2008.12.010
[41] Wang, X., Li, Y., Mao, A., Li, C., and Tien, P. (2010). Hepatitis B virus X protein suppresses virus-triggered IRF3 activation and IFN-beta induction by disrupting the VISA-associated complex. Cell Mol Immunol 7, 341-348. 10.1038/cmi.2010.36
[42] Li, W., Liu, Y., Mukhtar, M.M., Gong, R., Pan, Y., Rasool, S.T., Gao, Y., Kang, L., Hao, Q., Peng, G., . (2008). Activation of interleukin-32 pro-inflammatory pathway in response to influenza A virus infection. PLoS ONE 3, e1985.
[43] Yang, X.Y., Li, Y.X., Li, M., Zhang, L., Feng, L.X., and Zhang, N. (2012). Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett. (In Press).10.1016/j.canlet.2012.07.002
[44] Yu, Y., Gong, R., Mu, Y., Chen, Y., Zhu, C., Sun, Z., Chen, M., Liu, Y., Zhu, Y., and Wu, J. (2011). Hepatitis B virus induces a novel inflammation network involving three inflammatory factors, IL-29, IL-8, and cyclooxygenase-2. J Immunol 187, 4844-4860. 10.4049/jimmunol.1100998
[45] Yue, X., Wang, H., Zhao, F., Liu, S., Wu, J., Ren, W., and Zhu, Y. (2012). Hepatitis B virus-induced calreticulin protein is involved in IFN resistance. J Immunol 189, 279-286. 10.4049/jimmunol.1103405
[46] Zeng, Y., Yi, R., and Cullen, B.R. (2003). MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100, 9779-9784. 10.1073/pnas.1630797100
AI Summary AI Mindmap
PDF(1024 KB)

Accesses

Citations

Detail

Sections
Recommended

/