The BK channel: a vital link between cellular calcium and electrical signaling

Brad S. Rothberg()

PDF(542 KB)
PDF(542 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (12) : 883-892. DOI: 10.1007/s13238-012-2076-8
REVIEW
REVIEW

The BK channel: a vital link between cellular calcium and electrical signaling

  • Brad S. Rothberg()
Author information +
History +

Abstract

Large-conductance Ca2+-activated K+ channels (BK channels) constitute an key physiological link between cellular Ca2+ signaling and electrical signaling at the plasma membrane. Thus these channels are critical to the control of action potential firing and neurotransmitter release in several types of neurons, as well as the dynamic control of smooth muscle tone in resistance arteries, airway, and bladder. Recent advances in our understanding of K+ channel structure and function have led to new insight toward the molecular mechanisms of opening and closing (gating) of these channels. Here we will focus on mechanisms of BK channel gating by Ca2+, transmembrane voltage, and auxiliary subunit proteins.

Keywords

RCK domain / voltage sensor / blood pressure / leucine-rich repeat-containing (LRRC) protein

Cite this article

Download citation ▾
Brad S. Rothberg. The BK channel: a vital link between cellular calcium and electrical signaling. Prot Cell, 2012, 3(12): 883‒892 https://doi.org/10.1007/s13238-012-2076-8

References

[1] Adelman, J.P., Shen, K.Z., Kavanaugh, M.P., Warren, R.A., Wu, Y.N., Lagrutta, A., Bond, C.T., and North, R.A. (1992). Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9, 209-216 .10.1016/0896-6273(92)90160-F
[2] Bao, L., and Cox, D.H. (2005). Gating and ionic currents reveal how the BKCa channel's Ca2+ sensitivity is enhanced by its beta1 subunit. J Gen Physiol 126, 393-412 .10.1085/jgp.200509346
[3] Bao, L., Kaldany, C., Holmstrand, E.C., and Cox, D.H. (2004). Mapping the BKCa channel's "Ca2+ bowl": side-chains essential for Ca2+ sensing. J Gen Physiol 123, 475-489 .10.1085/jgp.200409052
[4] Bao, L., Rapin, A.M., Holmstrand, E.C., and Cox, D.H. (2002). Elimination of the BK(Ca) channel's high-affinity Ca(2+) sensitivity. J Gen Physiol 120, 173-189 .10.1085/jgp.20028627
[5] Barrett, J.N., Magleby, K.L., and Pallotta, B.S. (1982). Properties of single calcium-activated potassium channels in cultured rat muscle. J Physiol 331, 211-230 .
[6] Benzinger, G.R., Xia, X.M., and Lingle, C.J. (2006). Direct observation of a preinactivated, open state in BK channels with beta2 subunits. J Gen Physiol 127, 119-131 .10.1085/jgp.200509425
[7] Brayden, J.E., and Nelson, M.T. (1992). Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256, 532-535 .10.1126/science.1373909
[8] Brenner, R., Chen, Q.H., Vilaythong, A., Toney, G.M., Noebels, J.L., and Aldrich, R.W. (2005). BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat Neurosci 8, 1752-1759 .10.1038/nn1573
[9] Brenner, R., Jegla, T.J., Wickenden, A., Liu, Y., and Aldrich, R.W. (2000a). Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275, 6453-6461 .10.1074/jbc.275.9.6453
[10] Brenner, R., Perez, G.J., Bonev, A.D., Eckman, D.M., Kosek, J.C., Wiler, S.W., Patterson, A.J., Nelson, M.T., and Aldrich, R.W. (2000b). Vasoregulation by the beta1 subunit of the calcium- activated potassium channel. Nature 407, 870-876 .10.1038/35038011
[11] Butler, A., Tsunoda, S., McCobb, D.P., Wei, A., and Salkoff, L. (1993). mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science 261, 221-224 .10.1126/science.7687074
[12] Chen, X., and Aldrich, R.W. (2011). Charge substitution for a deep-pore residue reveals structural dynamics during BK channel gating. J Gen Physiol 138, 137-154 .10.1085/jgp.201110632
[13] Cox, D.H. (2005). The BKCa channel's Ca2+-binding sites, multiple sites, multiple ions. J Gen Physiol 125, 253-255 .10.1085/jgp.200509270
[14] Cox, D.H., and Aldrich, R.W. (2000). Role of the beta1 subunit in large-conductance Ca(2+)-activated K(+) channel gating energetics. Mechanisms of enhanced Ca(2+) sensitivity. J Gen Physiol 116, 411-432 .10.1085/jgp.116.3.411
[15] Cox, D.H., Cui, J., and Aldrich, R.W. (1997a). Allosteric gating of a large conductance Ca-activated K+ channel. J Gen Physiol 110, 257-281 .10.1085/jgp.110.3.257
[16] Cox, D.H., Cui, J., and Aldrich, R.W. (1997b). Separation of gating properties from permeation and block in mslo large conductance Ca-activated K+ channels. J Gen Physiol 109, 633-646 .10.1085/jgp.109.5.633
[17] Cui, J., and Aldrich, R.W. (2000). Allosteric linkage between voltage and Ca(2+)-dependent activation of BK-type mslo1 K(+) channels. Biochemistry 39, 15612-15619 .10.1021/bi001509+
[18] Cui, J., Cox, D.H., and Aldrich, R.W. (1997). Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca-activated K+ channels. J Gen Physiol 109, 647-673 .10.1085/jgp.109.5.647
[19] Dong, J., Shi, N., Berke, I., Chen, L., and Jiang, Y. (2005). Structures of the MthK RCK domain and the effect of Ca2+ on gating ring stability. J Biol Chem 280, 41716-41724 .10.1074/jbc.M508144200
[20] Ferrer, J., Wasson, J., Salkoff , L., and Permutt, M.A. (1996). Cloning of human pancreatic islet large conductance Ca(2+)-activated K+ channel (hSlo) cDNAs: evidence for high levels of expression in pancreatic islets and identification of a flanking genetic marker. Diabetologia 39, 891-898 .10.1007/BF00403907
[21] Filosa, J.A., Bonev, A.D., Straub, S.V., Meredith, A.L., Wilkerson, M.K., Aldrich, R.W., and Nelson, M.T. (2006). Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9, 1397-1403 .10.1038/nn1779
[22] Girouard, H., Bonev, A.D., Hannah, R.M., Meredith, A., Aldrich, R.W., and Nelson, M.T. (2010). Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc Natl Acad Sci U S A 107, 3811-3816 .10.1073/pnas.0914722107
[23] Gonzalez-Perez, V., Zeng, X.H., Henzler-Wildman, K., and Lingle, C.J. (2012). Stereospecific binding of a disordered peptide segment mediates BK channel inactivation. Nature 485, 133-136 .10.1038/nature10994
[24] Gorman, A.L., and Thomas, M.V. (1980). Potassium conductance and internal calcium accumulation in a molluscan neurone. J Physiol 308, 287-313 .
[25] Horrigan, F.T., and Aldrich, R.W. (1999). Allosteric voltage gating of potassium channels II. Mslo channel gating charge movement in the absence of Ca(2+). J Gen Physiol 114, 305-336 .10.1085/jgp.114.2.305
[26] Horrigan, F.T., and Aldrich, R.W. (2002). Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J Gen Physiol 120, 267-305 .10.1085/jgp.20028605
[27] Horrigan, F.T., Cui, J., and Aldrich, R.W. (1999). Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca(2+). J Gen Physiol 114, 277-304 .10.1085/jgp.114.2.277
[28] Hu, L., Yang, H., Shi, J., and Cui, J. (2006). Effects of multiple metal binding sites on calcium and magnesium-dependent activation of BK channels. J Gen Physiol 127, 35-49 .10.1085/jgp.200509317
[29] Imlach, W.L., Finch, S.C., Dunlop, J., Meredith, A.L., Aldrich, R.W., and Dalziel, J.E. (2008). The molecular mechanism of 'ryegrass staggers' a neurological disorder of K+ channels. J Pharmacol Exp Ther .327, 657-664 .10.1124/jpet.108.143933
[30] Jaffe, D.B., Wang, B., and Brenner, R. (2011). Shaping of action potentials by type I and type II large-conductance Ca(2)+-activated K+ channels. Neuroscience 192, 205-218 .10.1016/j.neuroscience.2011.06.028
[31] Jaggar, J.H., Wellman, G.C., Heppner, T.J., Porter, V.A., Perez, G.J., Gollasch, M., Kleppisch, T., Rubart, M., Stevenson, A.S., Lederer, W.J., . (1998). Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone. Acta Physiol Scand 164, 577-587 .10.1046/j.1365-201X.1998.00462.x
[32] Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B.T., and MacKinnon, R. (2002). Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515-522 .10.1038/417515a
[33] Jiang, Y., Pico, A., Cadene, M., Chait, B.T., and MacKinnon, R. (2001). Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29, 593-601 .10.1016/S0896-6273(01)00236-7
[34] Johnson, B.E., Glauser, D.A., Dan-Glauser, E.S., Halling, D.B., Aldrich, R.W., and Goodman, M.B. (2011). Alternatively spliced domains interact to regulate BK potassium channel gating. Proc Natl Acad Sci U S A 108, 20784-20789 .10.1073/pnas.1116795108
[35] Knaus, H.G., Eberhart, A., Kaczorowski, G.J., and Garcia, M.L. (1994). Covalent attachment of charybdotoxin to the beta-subunit of the high conductance Ca(2+)-activated K+ channel. Identification of the site of incorporation and implications for channel topology. J Biol Chem 269, 23336-23341 .
[36] Knot, H.J., Standen, N.B., and Nelson, M.T. (1998). Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels. J Physiol 508( Pt 1), 211-221 .
[37] Koval, O.M., Fan, Y., and Rothberg, B.S. (2007). A role for the S0 transmembrane segment in voltage-dependent gating of BK channels. J Gen Physiol 129, 209-220 .10.1085/jgp.200609662
[38] Lagrutta, A., Shen, K.Z., North, R.A., and Adelman, J.P. (1994). Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel. J Biol Chem 269, 20347-20351 .
[39] Ledoux, J., Werner, M.E., Brayden, J.E., and Nelson, M.T. (2006). Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda) 21, 69-78 .10.1152/physiol.00040.2005
[40] Li, W., and Aldrich, R.W. (2004). Unique inner pore properties of BK channels revealed by quaternary ammonium block. J Gen Physiol 124, 43-57 .10.1085/jgp.200409067
[41] Liu, G., Zakharov, S.I., Yang, L., Wu, R.S., Deng, S.X., Landry, D.W., Karlin, A., and Marx, S.O. (2008). Locations of the beta1 transmembrane helices in the BK potassium channel. Proc Natl Acad Sci U S A 105, 10727-10732 .10.1073/pnas.0805212105
[42] Magleby, K.L. (2001). Kinetic gating mechanisms for BK channels: when complexity leads to simplicity. J Gen Physiol 118, 583-587 .10.1085/jgp.118.5.583
[43] Magleby, K.L. (2003). Gating mechanism of BK (Slo1) channels: so near, yet so far. J Gen Physiol 121, 81-96 .10.1085/jgp.20028721
[44] Magleby, K.L., and Pallotta, B.S. (1983). Calcium dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle. J Physiol 344, 585-604 .
[45] McCobb, D.P., Fowler, N.L., Featherstone, T., Lingle, C.J., Saito, M., Krause, J.E., and Salkoff, L. (1995). A human calcium-activated potassium channel gene expressed in vascular smooth muscle. Am J Physiol 269, H767-777 .
[46] McManus, O.B., and Magleby, K.L. (1991). Accounting for the Ca(2+)-dependent kinetics of single large-conductance Ca(2+)-activated K+ channels in rat skeletal muscle. J Physiol 443, 739-777 .
[47] Meera, P., Wallner, M., Song, M., and Toro, L. (1997). Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc Natl Acad Sci U S A 94, 14066-14071 .10.1073/pnas.94.25.14066
[48] Meredith, A.L., Thorneloe, K.S., Werner, M.E., Nelson, M.T., and Aldrich, R.W. (2004). Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel. J Biol Chem 279, 36746-36752 .10.1074/jbc.M405621200
[49] Meredith, A.L., Wiler, S.W., Miller, B.H., Takahashi, J.S., Fodor, A.A., Ruby, N.F., and Aldrich, R.W. (2006). BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat Neurosci 9, 1041-1049 .10.1038/nn1740
[50] Moczydlowski, E., and Latorre, R. (1983). Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. J Gen Physiol 82, 511-542 .10.1085/jgp.82.4.511
[51] Morris, A.P., Gallacher, D.V., and Lee, J.A. (1986). A large conductance, voltage- and calcium-activated K+ channel in the basolateral membrane of rat enterocytes. FEBS Lett 206, 87-92 .10.1016/0014-5793(86)81346-1
[52] Morrow, J.P., Zakharov, S.I., Liu, G., Yang, L., Sok, A.J., and Marx, S.O. (2006). Defining the BK channel domains required for beta1- subunit modulation. Proc Natl Acad Sci U S A 103, 5096-5101 .10.1073/pnas.0600907103
[53] Nimigean, C.M., and Magleby, K.L. (1999). The beta subunit increases the Ca2+ sensitivity of large conductance Ca2+-activated potassium channels by retaining the gating in the bursting states. J Gen Physiol 113, 425-440 .10.1085/jgp.113.3.425
[54] Nimigean, C.M., and Magleby, K.L. (2000). Functional coupling of the beta(1) subunit to the large conductance Ca(2+)-activated K(+) channel in the absence of Ca(2+). Increased Ca(2+) sensitivity from a Ca(2+)-independent mechanism. J Gen Physiol 115, 719-736 .10.1085/jgp.115.6.719
[55] Niu, X., Qian, X., and Magleby, K.L. (2004). Linker-gating ring complex as passive spring and Ca(2+)-dependent machine for a voltage- and Ca(2+)-activated potassium channel. Neuron 42, 745-756 .10.1016/j.neuron.2004.05.001
[56] Pallanck, L., and Ganetzky, B. (1994). Cloning and characterization of human and mouse homologs of the Drosophila calcium-activated potassium channel gene, slowpoke. Hum Mol Genet 3, 1239-1243 .10.1093/hmg/3.8.1239
[57] Pantazis, A., Kohanteb, A.P., and Olcese, R. (2010). Relative motion of transmembrane segments S0 and S4 during voltage sensor activation in the human BK(Ca) channel. J Gen Physiol 136, 645-657 .10.1085/jgp.201010503
[58] Patterson, A.J., Henrie-Olson, J., and Brenner, R. (2002). Vasoregulation at the molecular level: a role for the beta1 subunit of the calcium-activated potassium (BK) channel. Trends Cardiovasc Med 12, 78-82 .10.1016/S1050-1738(01)00146-3
[59] Pau, V.P., Smith, F.J., Taylor, A.B., Parfenova, L.V., Samakai, E., Callaghan, M.M., Abarca-Heidemann, K., Hart, P.J., and Rothberg, B.S. (2011). Structure and function of multiple Ca2+-binding sites in a K+ channel regulator of K+ conductance (RCK) domain. Proc Natl Acad Sci U S A 108, 17684-17689 .10.1073/pnas.1107229108
[60] Perez, G.J., Bonev, A.D., Patlak, J.B., and Nelson, M.T. (1999). Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries. J Gen Physiol 113, 229-238 .10.1085/jgp.113.2.229
[61] Piskorowski, R.A., and Aldrich, R.W. (2006). Relationship between pore occupancy and gating in BK potassium channels. J Gen Physiol 127, 557-576 .10.1085/jgp.200509482
[62] Qian, X., Nimigean, C.M., Niu, X., Moss, B.L., and Magleby, K.L. (2002). Slo1 tail domains, but not the Ca2+ bowl, are required for the beta 1 subunit to increase the apparent Ca2+ sensitivity of BK channels. J Gen Physiol 120, 829-843 .10.1085/jgp.20028692
[63] Rothberg, B.S. (2004). Allosteric modulation of ion channels: the case of maxi-K. Sci STKE 2004, pe16.10.1126/stke.2272004pe16
[64] Rothberg, B.S., Bello, R.A., Song, L., and Magleby, K.L. (1996). High Ca2+ concentrations induce a low activity mode and reveal Ca2(+)-independent long shut intervals in BK channels from rat muscle. J Physiol 493 ( Pt 3), 673 -689 .
[65] Rothberg, B.S., and Magleby, K.L. (1998). Kinetic structure of large-conductance Ca2+-activated K+ channels suggests that the gating includes transitions through intermediate or secondary states. A mechanism for flickers. J Gen Physiol 111, 751-780 .10.1085/jgp.111.6.751
[66] Rothberg, B.S., and Magleby, K.L. (1999). Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism. J Gen Physiol 114, 93-124 .10.1085/jgp.114.1.93
[67] Rothberg, B.S., and Magleby, K.L. (2000). Voltage and Ca2+ activation of single large-conductance Ca2+-activated K+ channels described by a two-tiered allosteric gating mechanism. J Gen Physiol 116, 75-99 .10.1085/jgp.116.1.75
[68] Salkoff, L., Butler, A., Ferreira, G., Santi, C., and Wei, A. (2006). High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7, 921-931 .10.1038/nrn1992
[69] Savalli, N., Kondratiev, A., de Quintana, S.B., Toro, L., and Olcese, R. (2007). Modes of operation of the BKCa channel beta2 subunit. J Gen Physiol 130, 117-131 .10.1085/jgp.200709803
[70] Schreiber, M., and Salkoff, L. (1997). A novel calcium-sensing domain in the BK channel. Biophys J 73, 1355-1363 .10.1016/S0006-3495(97)78168-2
[71] Schreiber, M., Wei, A., Yuan, A., Gaut, J., Saito, M., and Salkoff, L. (1998). Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes. J Biol Chem 273, 3509-3516 .10.1074/jbc.273.6.3509
[72] Schreiber, M., Yuan, A., and Salkoff, L. (1999). Transplantable sites confer calcium sensitivity to BK channels. Nat Neurosci 2, 416-421 .10.1038/8077
[73] Seibold, M.A., Wang, B., Eng, C., Kumar, G., Beckman, K.B., Sen, S., Choudhry, S., Meade, K., Lenoir, M., Watson, H.G., . (2008). An african-specific functional polymorphism in KCNMB1 shows sex-specific association with asthma severity. Hum Mol Genet 17, 2681-2690 .10.1093/hmg/ddn168
[74] Semenov, I., Wang, B., Herlihy, J.T., and Brenner, R. (2011). BK channel beta1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization. J Physiol 589, 1803-1817 .10.1113/jphysiol.2010.204347
[75] Shelley, C., Niu, X., Geng, Y., and Magleby, K.L. (2010). Coupling and cooperativity in voltage activation of a limited-state BK channel gating in saturating Ca2+. J Gen Physiol 135, 461-480 .10.1085/jgp.200910331
[76] Shen, K.Z., Lagrutta, A., Davies, N.W., Standen, N.B., Adelman, J.P., and North, R.A. (1994). Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: evidence for tetrameric channel formation. Pflugers Arch , 440-445 .10.1007/BF00388308
[77] Shi, J., Krishnamoorthy, G., Yang, Y., Hu, L., Chaturvedi, N., Harilal, D., Qin, J., and Cui, J. (2002). Mechanism of magnesium activation of calcium-activated potassium channels. Nature 418, 876-880 .10.1038/nature00941
[78] Singer, J.J., and Walsh, J.V., Jr. (1986). Large-conductance Ca2+-activated K+ channels in freshly dissociated smooth muscle cells. Membr Biochem 6, 83-110 .10.3109/09687688609065445
[79] Tanaka, Y., Meera, P., Song, M., Knaus, H.G., and Toro, L. (1997). Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha+ beta subunit complexes. J Physiol 502 (Pt 3), 545-557 .10.1111/j.1469-7793.1997.545bj.x
[80] Wallner, M., Meera, P., and Toro, L. (1996). Determinant for beta- subunit regulation in high-conductance voltage-activated and Ca(2+)-sensitive K+ channels: an additional transmembrane region at the N terminus. Proc Natl Acad Sci U S A 93, 14922-14927 .10.1073/pnas.93.25.14922
[81] Wang, B., Rothberg, B.S., and Brenner, R. (2006). Mechanism of beta4 subunit modulation of BK channels. J Gen Physiol 127, 449-465 .10.1085/jgp.200509436
[82] Wang, B., Rothberg, B.S., and Brenner, R. (2009). Mechanism of increased BK channel activation from a channel mutation that causes epilepsy. J Gen Physiol 133, 283-294 .10.1085/jgp.200810141
[83] Wang, Z.W., Saifee, O., Nonet, M.L., and Salkoff, L. (2001). SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 32, 867-881 .10.1016/S0896-6273(01)00522-0
[84] Wei, A., Jegla, T., and Salkoff, L. (1996). Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology 35, 805-829 .10.1016/0028-3908(96)00126-8
[85] Werner, M.E., Zvara, P., Meredith, A.L., Aldrich, R.W., and Nelson, M.T. (2005). Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel. J Physiol 567, 545-556 .10.1113/jphysiol.2005.093823
[86] Wilkens, C.M., and Aldrich, R.W. (2006). State-independent block of BK channels by an intracellular quaternary ammonium. J Gen Physiol 128, 347-364 .10.1085/jgp.200609579
[87] Wu, R.S., Chudasama, N., Zakharov, S.I., Doshi, D., Motoike, H., Liu, G., Yao, Y., Niu, X., Deng, S.X., Landry, D.W., . (2009). Location of the beta 4 transmembrane helices in the BK potassium channel. J Neurosci 29, 8321-8328 .10.1523/JNEUROSCI.6191-08.2009
[88] Wu, Y., Yang, Y., Ye, S., and Jiang, Y. (2010). Structure of the gating ring from the human large-conductance Ca(2+)-gated K(+) channel. Nature 466, 393-397 .10.1038/nature09252
[89] Xia, X.M., Ding, J.P., and Lingle, C.J. (2003). Inactivation of BK channels by the NH2 terminus of the beta2 auxiliary subunit: an essential role of a terminal peptide segment of three hydrophobic residues. J Gen Physiol 121, 125-148 .10.1085/jgp.20028667
[90] Xia, X.M., Zeng, X., and Lingle, C.J. (2002). Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418, 880-884 .10.1038/nature00956
[91] Yan, J., and Aldrich, R.W. (2010). LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium. Nature 466, 513-516 .10.1038/nature09162
[92] Yan, J., and Aldrich, R.W. (2012). BK potassium channel modulation by leucine-rich repeat-containing proteins. Proc Natl Acad Sci U S A 109, 7917-7922 .10.1073/pnas.1205435109
[93] Ye, S., Li, Y., Chen, L., and Jiang, Y. (2006). Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of K+ channels. Cell 126, 1161-1173 .10.1016/j.cell.2006.08.029
[94] Yuan, A., Dourado, M., Butler, A., Walton, N., Wei, A., and Salkoff, L. (2000). SLO-2, a K+ channel with an unusual Cl- dependence. Nat Neurosci 3, 771-779 .10.1038/77670
[95] Yuan, P., Leonetti, M.D., Hsiung, Y., and MacKinnon, R. (2011). Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature 481, 94-97 .10.1038/nature10670
[96] Yuan, P., Leonetti, M.D., Pico, A.R., Hsiung, Y., and MacKinnon, R. (2010). Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution. Science 329, 182-186 .10.1126/science.1190414
[97] Zeng, X.H., Ding, J.P., Xia, X.M., and Lingle, C.J. (2001). Gating properties conferred on BK channels by the beta3b auxiliary subunit in the absence of its NH(2)- and COOH termini. J Gen Physiol 117, 607-628 .10.1085/jgp.117.6.607
[98] Zeng, X.H., Xia, X.M., and Lingle, C.J. (2005). Divalent cation sensitivity of BK channel activation supports the existence of three distinct binding sites. J Gen Physiol 125, 273-286 .10.1085/jgp.200409239
[99] Zhang, X., Solaro, C.R., and Lingle, C.J. (2001). Allosteric regulation of BK channel gating by Ca(2+) and Mg(2+) through a nonselective, low affinity divalent cation site. J Gen Physiol 118, 607-636 .10.1085/jgp.118.5.607
[100] Zhou, Y., Zeng, X.H., and Lingle, C.J. (2012). Barium ions selectively activate BK channels via the Ca2+-bowl site. Proc Natl Acad Sci U S A 109, 11413-11418 .10.1073/pnas.1204444109
[101] Zhu, Y., Bian, Z., Lu, P., Karas, R.H., Bao, L., Cox, D., Hodgin, J., Shaul, P.W., Thoren, P., Smithies, O., . (2002). Abnormal vascular function and hypertension in mice deficient in estrogen receptor beta. Science , 505-508 .10.1126/science.1065250
[102] ZhuGe, R., Fogarty, K.E., Tuft, R.A., and Walsh, J.V., Jr. (2002). Spontaneous transient outward currents arise from microdomains where BK channels are exposed to a mean Ca(2+) concentration on the order of 10 microM during a Ca(2+) spark. J Gen Physiol 120, 15-27 .10.1085/jgp.20028571
[103] ZhuGe, R., Sims, S.M., Tuft, R.A., Fogarty, K.E., and Walsh, J.V., Jr. (1998). Ca2+ sparks activate K+ and Cl- channels, resulting in spontaneous transient currents in guinea-pig tracheal myocytes. J Physiol 513(Pt 3), 711-718 .
AI Summary AI Mindmap
PDF(542 KB)

Accesses

Citations

Detail

Sections
Recommended

/