[1] Adelman, J.P., Shen, K.Z., Kavanaugh, M.P., Warren, R.A., Wu, Y.N., Lagrutta, A., Bond, C.T., and North, R.A. (1992). Calcium-activated potassium channels expressed from cloned complementary DNAs.
Neuron 9, 209-216 .
10.1016/0896-6273(92)90160-F[2] Bao, L., and Cox, D.H. (2005). Gating and ionic currents reveal how the BKCa channel's Ca2+ sensitivity is enhanced by its beta1 subunit.
J Gen Physiol 126, 393-412 .
10.1085/jgp.200509346[3] Bao, L., Kaldany, C., Holmstrand, E.C., and Cox, D.H. (2004). Mapping the BKCa channel's "Ca2+ bowl": side-chains essential for Ca2+ sensing.
J Gen Physiol 123, 475-489 .
10.1085/jgp.200409052[4] Bao, L., Rapin, A.M., Holmstrand, E.C., and Cox, D.H. (2002). Elimination of the BK(Ca) channel's high-affinity Ca(2+) sensitivity.
J Gen Physiol 120, 173-189 .
10.1085/jgp.20028627[5] Barrett, J.N., Magleby, K.L., and Pallotta, B.S. (1982). Properties of single calcium-activated potassium channels in cultured rat muscle.
J Physiol 331, 211-230 .
[6] Benzinger, G.R., Xia, X.M., and Lingle, C.J. (2006). Direct observation of a preinactivated, open state in BK channels with beta2 subunits.
J Gen Physiol 127, 119-131 .
10.1085/jgp.200509425[7] Brayden, J.E., and Nelson, M.T. (1992). Regulation of arterial tone by activation of calcium-dependent potassium channels.
Science 256, 532-535 .
10.1126/science.1373909[8] Brenner, R., Chen, Q.H., Vilaythong, A., Toney, G.M., Noebels, J.L., and Aldrich, R.W. (2005). BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures.
Nat Neurosci 8, 1752-1759 .
10.1038/nn1573[9] Brenner, R., Jegla, T.J., Wickenden, A., Liu, Y., and Aldrich, R.W. (2000a). Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4.
J Biol Chem 275, 6453-6461 .
10.1074/jbc.275.9.6453[10] Brenner, R., Perez, G.J., Bonev, A.D., Eckman, D.M., Kosek, J.C., Wiler, S.W., Patterson, A.J., Nelson, M.T., and Aldrich, R.W. (2000b). Vasoregulation by the beta1 subunit of the calcium- activated potassium channel.
Nature 407, 870-876 .
10.1038/35038011[11] Butler, A., Tsunoda, S., McCobb, D.P., Wei, A., and Salkoff, L. (1993). mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels.
Science 261, 221-224 .
10.1126/science.7687074[12] Chen, X., and Aldrich, R.W. (2011). Charge substitution for a deep-pore residue reveals structural dynamics during BK channel gating.
J Gen Physiol 138, 137-154 .
10.1085/jgp.201110632[13] Cox, D.H. (2005). The BKCa channel's Ca2+-binding sites, multiple sites, multiple ions.
J Gen Physiol 125, 253-255 .
10.1085/jgp.200509270[14] Cox, D.H., and Aldrich, R.W. (2000). Role of the beta1 subunit in large-conductance Ca(2+)-activated K(+) channel gating energetics. Mechanisms of enhanced Ca(2+) sensitivity.
J Gen Physiol 116, 411-432 .
10.1085/jgp.116.3.411[15] Cox, D.H., Cui, J., and Aldrich, R.W. (1997a). Allosteric gating of a large conductance Ca-activated K+ channel.
J Gen Physiol 110, 257-281 .
10.1085/jgp.110.3.257[16] Cox, D.H., Cui, J., and Aldrich, R.W. (1997b). Separation of gating properties from permeation and block in mslo large conductance Ca-activated K+ channels.
J Gen Physiol 109, 633-646 .
10.1085/jgp.109.5.633[17] Cui, J., and Aldrich, R.W. (2000). Allosteric linkage between voltage and Ca(2+)-dependent activation of BK-type mslo1 K(+) channels
. Biochemistry 39, 15612-15619 .
10.1021/bi001509+[18] Cui, J., Cox, D.H., and Aldrich, R.W. (1997). Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca-activated K+ channels.
J Gen Physiol 109, 647-673 .
10.1085/jgp.109.5.647[19] Dong, J., Shi, N., Berke, I., Chen, L., and Jiang, Y. (2005). Structures of the MthK RCK domain and the effect of Ca2+ on gating ring stability.
J Biol Chem 280, 41716-41724 .
10.1074/jbc.M508144200[20] Ferrer, J., Wasson, J., Salkoff , L., and Permutt, M.A. (1996). Cloning of human pancreatic islet large conductance Ca(2+)-activated K+ channel (hSlo) cDNAs: evidence for high levels of expression in pancreatic islets and identification of a flanking genetic marker.
Diabetologia 39, 891-898 .
10.1007/BF00403907[21] Filosa, J.A., Bonev, A.D., Straub, S.V., Meredith, A.L., Wilkerson, M.K., Aldrich, R.W., and Nelson, M.T. (2006). Local potassium signaling couples neuronal activity to vasodilation in the brain.
Nat Neurosci 9, 1397-1403 .
10.1038/nn1779[22] Girouard, H., Bonev, A.D., Hannah, R.M., Meredith, A., Aldrich, R.W., and Nelson, M.T. (2010). Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction.
Proc Natl Acad Sci U S A 107, 3811-3816 .
10.1073/pnas.0914722107[23] Gonzalez-Perez, V., Zeng, X.H., Henzler-Wildman, K., and Lingle, C.J. (2012). Stereospecific binding of a disordered peptide segment mediates BK channel inactivation.
Nature 485, 133-136 .
10.1038/nature10994[24] Gorman, A.L., and Thomas, M.V. (1980). Potassium conductance and internal calcium accumulation in a molluscan neurone.
J Physiol 308, 287-313 .
[25] Horrigan, F.T., and Aldrich, R.W. (1999). Allosteric voltage gating of potassium channels II. Mslo channel gating charge movement in the absence of Ca(2+).
J Gen Physiol 114, 305-336 .
10.1085/jgp.114.2.305[26] Horrigan, F.T., and Aldrich, R.W. (2002). Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
J Gen Physiol 120, 267-305 .
10.1085/jgp.20028605[27] Horrigan, F.T., Cui, J., and Aldrich, R.W. (1999). Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca(2+).
J Gen Physiol 114, 277-304 .
10.1085/jgp.114.2.277[28] Hu, L., Yang, H., Shi, J., and Cui, J. (2006). Effects of multiple metal binding sites on calcium and magnesium-dependent activation of BK channels.
J Gen Physiol 127, 35-49 .
10.1085/jgp.200509317[29] Imlach, W.L., Finch, S.C., Dunlop, J., Meredith, A.L., Aldrich, R.W., and Dalziel, J.E. (2008). The molecular mechanism of 'ryegrass staggers' a neurological disorder of K+ channels.
J Pharmacol Exp Ther .327, 657-664 .
10.1124/jpet.108.143933[30] Jaffe, D.B., Wang, B., and Brenner, R. (2011). Shaping of action potentials by type I and type II large-conductance Ca(2)+-activated K+ channels.
Neuroscience 192, 205-218 .
10.1016/j.neuroscience.2011.06.028[31] Jaggar, J.H., Wellman, G.C., Heppner, T.J., Porter, V.A., Perez, G.J., Gollasch, M., Kleppisch, T., Rubart, M., Stevenson, A.S., Lederer, W.J.,
. (1998). Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone.
Acta Physiol Scand 164, 577-587 .
10.1046/j.1365-201X.1998.00462.x[32] Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B.T., and MacKinnon, R. (2002). Crystal structure and mechanism of a calcium-gated potassium channel.
Nature 417, 515-522 .
10.1038/417515a[33] Jiang, Y., Pico, A., Cadene, M., Chait, B.T., and MacKinnon, R. (2001). Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel.
Neuron 29, 593-601 .
10.1016/S0896-6273(01)00236-7 [34] Johnson, B.E., Glauser, D.A., Dan-Glauser, E.S., Halling, D.B., Aldrich, R.W., and Goodman, M.B. (2011). Alternatively spliced domains interact to regulate BK potassium channel gating.
Proc Natl Acad Sci U S A 108, 20784-20789 .
10.1073/pnas.1116795108[35] Knaus, H.G., Eberhart, A., Kaczorowski, G.J., and Garcia, M.L. (1994). Covalent attachment of charybdotoxin to the beta-subunit of the high conductance Ca(2+)-activated K+ channel. Identification of the site of incorporation and implications for channel topology.
J Biol Chem 269, 23336-23341 .
[36] Knot, H.J., Standen, N.B., and Nelson, M.T. (1998). Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels.
J Physiol 508( Pt 1), 211-221 .
[37] Koval, O.M., Fan, Y., and Rothberg, B.S. (2007). A role for the S0 transmembrane segment in voltage-dependent gating of BK channels.
J Gen Physiol 129, 209-220 .
10.1085/jgp.200609662[38] Lagrutta, A., Shen, K.Z., North, R.A., and Adelman, J.P. (1994). Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel.
J Biol Chem 269, 20347-20351 .
[39] Ledoux, J., Werner, M.E., Brayden, J.E., and Nelson, M.T. (2006). Calcium-activated potassium channels and the regulation of vascular tone.
Physiology (Bethesda) 21, 69-78 .
10.1152/physiol.00040.2005[40] Li, W., and Aldrich, R.W. (2004). Unique inner pore properties of BK channels revealed by quaternary ammonium block.
J Gen Physiol 124, 43-57 .
10.1085/jgp.200409067[41] Liu, G., Zakharov, S.I., Yang, L., Wu, R.S., Deng, S.X., Landry, D.W., Karlin, A., and Marx, S.O. (2008). Locations of the beta1 transmembrane helices in the BK potassium channel.
Proc Natl Acad Sci U S A 105, 10727-10732 .
10.1073/pnas.0805212105[42] Magleby, K.L. (2001). Kinetic gating mechanisms for BK channels: when complexity leads to simplicity.
J Gen Physiol 118, 583-587 .
10.1085/jgp.118.5.583[43] Magleby, K.L. (2003). Gating mechanism of BK (Slo1) channels: so near, yet so far.
J Gen Physiol 121, 81-96 .
10.1085/jgp.20028721[44] Magleby, K.L., and Pallotta, B.S. (1983). Calcium dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle.
J Physiol 344, 585-604 .
[45] McCobb, D.P., Fowler, N.L., Featherstone, T., Lingle, C.J., Saito, M., Krause, J.E., and Salkoff, L. (1995). A human calcium-activated potassium channel gene expressed in vascular smooth muscle.
Am J Physiol 269, H767-777 .
[46] McManus, O.B., and Magleby, K.L. (1991). Accounting for the Ca(2+)-dependent kinetics of single large-conductance Ca(2+)-activated K+ channels in rat skeletal muscle.
J Physiol 443, 739-777 .
[47] Meera, P., Wallner, M., Song, M., and Toro, L. (1997). Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus.
Proc Natl Acad Sci U S A 94, 14066-14071 .
10.1073/pnas.94.25.14066[48] Meredith, A.L., Thorneloe, K.S., Werner, M.E., Nelson, M.T., and Aldrich, R.W. (2004). Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel.
J Biol Chem 279, 36746-36752 .
10.1074/jbc.M405621200[49] Meredith, A.L., Wiler, S.W., Miller, B.H., Takahashi, J.S., Fodor, A.A., Ruby, N.F., and Aldrich, R.W. (2006). BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output.
Nat Neurosci 9, 1041-1049 .
10.1038/nn1740[50] Moczydlowski, E., and Latorre, R. (1983). Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions.
J Gen Physiol 82, 511-542 .
10.1085/jgp.82.4.511[51] Morris, A.P., Gallacher, D.V., and Lee, J.A. (1986). A large conductance, voltage- and calcium-activated K+ channel in the basolateral membrane of rat enterocytes.
FEBS Lett 206, 87-92 .
10.1016/0014-5793(86)81346-1 [52] Morrow, J.P., Zakharov, S.I., Liu, G., Yang, L., Sok, A.J., and Marx, S.O. (2006). Defining the BK channel domains required for beta1- subunit modulation.
Proc Natl Acad Sci U S A 103, 5096-5101 .
10.1073/pnas.0600907103[53] Nimigean, C.M., and Magleby, K.L. (1999). The beta subunit increases the Ca2+ sensitivity of large conductance Ca2+-activated potassium channels by retaining the gating in the bursting states.
J Gen Physiol 113, 425-440 .
10.1085/jgp.113.3.425[54] Nimigean, C.M., and Magleby, K.L. (2000). Functional coupling of the beta(1) subunit to the large conductance Ca(2+)-activated K(+) channel in the absence of Ca(2+). Increased Ca(2+) sensitivity from a Ca(2+)-independent mechanism.
J Gen Physiol 115, 719-736 .
10.1085/jgp.115.6.719[55] Niu, X., Qian, X., and Magleby, K.L. (2004). Linker-gating ring complex as passive spring and Ca(2+)-dependent machine for a voltage- and Ca(2+)-activated potassium channel.
Neuron 42, 745-756 .
10.1016/j.neuron.2004.05.001[56] Pallanck, L., and Ganetzky, B. (1994). Cloning and characterization of human and mouse homologs of the Drosophila calcium-activated potassium channel gene, slowpoke.
Hum Mol Genet 3, 1239-1243 .
10.1093/hmg/3.8.1239[57] Pantazis, A., Kohanteb, A.P., and Olcese, R. (2010). Relative motion of transmembrane segments S0 and S4 during voltage sensor activation in the human BK(Ca) channel.
J Gen Physiol 136, 645-657 .
10.1085/jgp.201010503[58] Patterson, A.J., Henrie-Olson, J., and Brenner, R. (2002). Vasoregulation at the molecular level: a role for the beta1 subunit of the calcium-activated potassium (BK) channel.
Trends Cardiovasc Med 12, 78-82 .
10.1016/S1050-1738(01)00146-3 [59] Pau, V.P., Smith, F.J., Taylor, A.B., Parfenova, L.V., Samakai, E., Callaghan, M.M., Abarca-Heidemann, K., Hart, P.J., and Rothberg, B.S. (2011). Structure and function of multiple Ca2+-binding sites in a K+ channel regulator of K+ conductance (RCK) domain.
Proc Natl Acad Sci U S A 108, 17684-17689 .
10.1073/pnas.1107229108[60] Perez, G.J., Bonev, A.D., Patlak, J.B., and Nelson, M.T. (1999). Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries.
J Gen Physiol 113, 229-238 .
10.1085/jgp.113.2.229[61] Piskorowski, R.A., and Aldrich, R.W. (2006). Relationship between pore occupancy and gating in BK potassium channels.
J Gen Physiol 127, 557-576 .
10.1085/jgp.200509482[62] Qian, X., Nimigean, C.M., Niu, X., Moss, B.L., and Magleby, K.L. (2002). Slo1 tail domains, but not the Ca2+ bowl, are required for the beta 1 subunit to increase the apparent Ca2+ sensitivity of BK channels.
J Gen Physiol 120, 829-843 .
10.1085/jgp.20028692[63] Rothberg, B.S. (2004). Allosteric modulation of ion channels: the case of maxi-K.
Sci STKE 2004, pe16.
10.1126/stke.2272004pe16[64] Rothberg, B.S., Bello, R.A., Song, L., and Magleby, K.L. (1996). High Ca2+ concentrations induce a low activity mode and reveal Ca2(+)-independent long shut intervals in BK channels from rat muscle.
J Physiol 493 ( Pt 3), 673 -689 .
[65] Rothberg, B.S., and Magleby, K.L. (1998). Kinetic structure of large-conductance Ca2+-activated K+ channels suggests that the gating includes transitions through intermediate or secondary states. A mechanism for flickers.
J Gen Physiol 111, 751-780 .
10.1085/jgp.111.6.751[66] Rothberg, B.S., and Magleby, K.L. (1999). Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism.
J Gen Physiol 114, 93-124 .
10.1085/jgp.114.1.93[67] Rothberg, B.S., and Magleby, K.L. (2000). Voltage and Ca2+ activation of single large-conductance Ca2+-activated K+ channels described by a two-tiered allosteric gating mechanism.
J Gen Physiol 116, 75-99 .
10.1085/jgp.116.1.75[68] Salkoff, L., Butler, A., Ferreira, G., Santi, C., and Wei, A. (2006). High-conductance potassium channels of the SLO family.
Nat Rev Neurosci 7, 921-931 .
10.1038/nrn1992[69] Savalli, N., Kondratiev, A., de Quintana, S.B., Toro, L., and Olcese, R. (2007). Modes of operation of the BKCa channel beta2 subunit.
J Gen Physiol 130, 117-131 .
10.1085/jgp.200709803[70] Schreiber, M., and Salkoff, L. (1997). A novel calcium-sensing domain in the BK channel.
Biophys J 73, 1355-1363 .
10.1016/S0006-3495(97)78168-2[71] Schreiber, M., Wei, A., Yuan, A., Gaut, J., Saito, M., and Salkoff, L. (1998). Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes.
J Biol Chem 273, 3509-3516 .
10.1074/jbc.273.6.3509[72] Schreiber, M., Yuan, A., and Salkoff, L. (1999). Transplantable sites confer calcium sensitivity to BK channels.
Nat Neurosci 2, 416-421 .
10.1038/8077[73] Seibold, M.A., Wang, B., Eng, C., Kumar, G., Beckman, K.B., Sen, S., Choudhry, S., Meade, K., Lenoir, M., Watson, H.G.,
. (2008). An african-specific functional polymorphism in KCNMB1 shows sex-specific association with asthma severity.
Hum Mol Genet 17, 2681-2690 .
10.1093/hmg/ddn168[74] Semenov, I., Wang, B., Herlihy, J.T., and Brenner, R. (2011). BK channel beta1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization.
J Physiol 589, 1803-1817 .
10.1113/jphysiol.2010.204347[75] Shelley, C., Niu, X., Geng, Y., and Magleby, K.L. (2010). Coupling and cooperativity in voltage activation of a limited-state BK channel gating in saturating Ca2+.
J Gen Physiol 135, 461-480 .
10.1085/jgp.200910331[76] Shen, K.Z., Lagrutta, A., Davies, N.W., Standen, N.B., Adelman, J.P., and North, R.A. (1994). Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: evidence for tetrameric channel formation.
Pflugers Arch , 440-445 .
10.1007/BF00388308[77] Shi, J., Krishnamoorthy, G., Yang, Y., Hu, L., Chaturvedi, N., Harilal, D., Qin, J., and Cui, J. (2002). Mechanism of magnesium activation of calcium-activated potassium channels.
Nature 418, 876-880 .
10.1038/nature00941[78] Singer, J.J., and Walsh, J.V., Jr. (1986). Large-conductance Ca2+-activated K+ channels in freshly dissociated smooth muscle cells
. Membr Biochem 6, 83-110 .
10.3109/09687688609065445[79] Tanaka, Y., Meera, P., Song, M., Knaus, H.G., and Toro, L. (1997). Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha+ beta subunit complexes.
J Physiol 502 (Pt 3), 545-557 .
10.1111/j.1469-7793.1997.545bj.x[80] Wallner, M., Meera, P., and Toro, L. (1996). Determinant for beta- subunit regulation in high-conductance voltage-activated and Ca(2+)-sensitive K+ channels: an additional transmembrane region at the N terminus.
Proc Natl Acad Sci U S A 93, 14922-14927 .
10.1073/pnas.93.25.14922[81] Wang, B., Rothberg, B.S., and Brenner, R. (2006). Mechanism of beta4 subunit modulation of BK channels.
J Gen Physiol 127, 449-465 .
10.1085/jgp.200509436[82] Wang, B., Rothberg, B.S., and Brenner, R. (2009). Mechanism of increased BK channel activation from a channel mutation that causes epilepsy.
J Gen Physiol 133, 283-294 .
10.1085/jgp.200810141[83] Wang, Z.W., Saifee, O., Nonet, M.L., and Salkoff, L. (2001). SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction.
Neuron 32, 867-881 .
10.1016/S0896-6273(01)00522-0[84] Wei, A., Jegla, T., and Salkoff, L. (1996). Eight potassium channel families revealed by the C. elegans genome project
. Neuropharmacology 35, 805-829 .
10.1016/0028-3908(96)00126-8[85] Werner, M.E., Zvara, P., Meredith, A.L., Aldrich, R.W., and Nelson, M.T. (2005). Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel.
J Physiol 567, 545-556 .
10.1113/jphysiol.2005.093823[86] Wilkens, C.M., and Aldrich, R.W. (2006). State-independent block of BK channels by an intracellular quaternary ammonium.
J Gen Physiol 128, 347-364 .
10.1085/jgp.200609579[87] Wu, R.S., Chudasama, N., Zakharov, S.I., Doshi, D., Motoike, H., Liu, G., Yao, Y., Niu, X., Deng, S.X., Landry, D.W.,
. (2009). Location of the beta 4 transmembrane helices in the BK potassium channel.
J Neurosci 29, 8321-8328 .
10.1523/JNEUROSCI.6191-08.2009[88] Wu, Y., Yang, Y., Ye, S., and Jiang, Y. (2010). Structure of the gating ring from the human large-conductance Ca(2+)-gated K(+) channel.
Nature 466, 393-397 .
10.1038/nature09252[89] Xia, X.M., Ding, J.P., and Lingle, C.J. (2003). Inactivation of BK channels by the NH2 terminus of the beta2 auxiliary subunit: an essential role of a terminal peptide segment of three hydrophobic residues.
J Gen Physiol 121, 125-148 .
10.1085/jgp.20028667[90] Xia, X.M., Zeng, X., and Lingle, C.J. (2002). Multiple regulatory sites in large-conductance calcium-activated potassium channels.
Nature 418, 880-884 .
10.1038/nature00956[91] Yan, J., and Aldrich, R.W. (2010). LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium.
Nature 466, 513-516 .
10.1038/nature09162[92] Yan, J., and Aldrich, R.W. (2012). BK potassium channel modulation by leucine-rich repeat-containing proteins.
Proc Natl Acad Sci U S A 109, 7917-7922 .
10.1073/pnas.1205435109[93] Ye, S., Li, Y., Chen, L., and Jiang, Y. (2006). Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of K+ channels.
Cell 126, 1161-1173 .
10.1016/j.cell.2006.08.029[94] Yuan, A., Dourado, M., Butler, A., Walton, N., Wei, A., and Salkoff, L. (2000). SLO-2, a K+ channel with an unusual Cl- dependence.
Nat Neurosci 3, 771-779 .
10.1038/77670[95] Yuan, P., Leonetti, M.D., Hsiung, Y., and MacKinnon, R. (2011). Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel.
Nature 481, 94-97 .
10.1038/nature10670[96] Yuan, P., Leonetti, M.D., Pico, A.R., Hsiung, Y., and MacKinnon, R. (2010). Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution.
Science 329, 182-186 .
10.1126/science.1190414[97] Zeng, X.H., Ding, J.P., Xia, X.M., and Lingle, C.J. (2001). Gating properties conferred on BK channels by the beta3b auxiliary subunit in the absence of its NH(2)- and COOH termini.
J Gen Physiol 117, 607-628 .
10.1085/jgp.117.6.607[98] Zeng, X.H., Xia, X.M., and Lingle, C.J. (2005). Divalent cation sensitivity of BK channel activation supports the existence of three distinct binding sites.
J Gen Physiol 125, 273-286 .
10.1085/jgp.200409239[99] Zhang, X., Solaro, C.R., and Lingle, C.J. (2001). Allosteric regulation of BK channel gating by Ca(2+) and Mg(2+) through a nonselective, low affinity divalent cation site.
J Gen Physiol 118, 607-636 .
10.1085/jgp.118.5.607[100] Zhou, Y., Zeng, X.H., and Lingle, C.J. (2012). Barium ions selectively activate BK channels via the Ca2+-bowl site.
Proc Natl Acad Sci U S A 109, 11413-11418 .
10.1073/pnas.1204444109[101] Zhu, Y., Bian, Z., Lu, P., Karas, R.H., Bao, L., Cox, D., Hodgin, J., Shaul, P.W., Thoren, P., Smithies, O.,
. (2002). Abnormal vascular function and hypertension in mice deficient in estrogen receptor beta.
Science , 505-508 .
10.1126/science.1065250[102] ZhuGe, R., Fogarty, K.E., Tuft, R.A., and Walsh, J.V., Jr. (2002). Spontaneous transient outward currents arise from microdomains where BK channels are exposed to a mean Ca(2+) concentration on the order of 10 microM during a Ca(2+) spark.
J Gen Physiol 120, 15-27 .
10.1085/jgp.20028571[103] ZhuGe, R., Sims, S.M., Tuft, R.A., Fogarty, K.E., and Walsh, J.V., Jr. (1998). Ca2+ sparks activate K+ and Cl- channels, resulting in spontaneous transient currents in guinea-pig tracheal myocytes.
J Physiol 513(Pt 3), 711-718 .