MCP-1-induced protein-1, an immune regulator

Jiwei Xu, Sheng Fu, Wei Peng, Zihe Rao()

PDF(572 KB)
PDF(572 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (12) : 903-910. DOI: 10.1007/s13238-012-2075-9
REVIEW
REVIEW

MCP-1-induced protein-1, an immune regulator

  • Jiwei Xu, Sheng Fu, Wei Peng, Zihe Rao()
Author information +
History +

Abstract

MCP-1-induced protein-1 (MCPIP1) is a newly identified protein that is crucial to immune regulation. Mice lacking MCPIP1 gene suffer from severe immune disorders, and most of them cannot survive longer than 12 weeks. Considerable progress has been made in revealing the mechanism underlying the immune regulatory function of MCPIP1. MCPIP1 can act as an RNase to promote the mRNA degradation of some inflammatory cytokines, such as IL-6 and IL-1. Pre-microRNAs are also confirmed to be the substrate of MCPIP1 RNase. The structure of MCPIP1 N-terminal conserved domain shows a PilT N-terminus-like RNase structure, further supporting the notion that MCPIP1 has RNase activity. MCPIP1 can also deubiquitinate TNF receptor-associated factor family proteins, which are known to mediate immune and inflammatory responses. In this review, we summarize recent progress on the immune regulatory role of MCPIP1 and discuss the mechanisms underlying its function.

Keywords

MCPIP1 / immune regulation / RNase / deubiquitinating enzyme / crystal structure

Cite this article

Download citation ▾
Jiwei Xu, Sheng Fu, Wei Peng, Zihe Rao. MCP-1-induced protein-1, an immune regulator. Prot Cell, 2012, 3(12): 903‒910 https://doi.org/10.1007/s13238-012-2075-9

References

[1] Abdi, K. (2002). IL-12: the role of p40 versus p75. Scand J Immunol 56, 1-11 .10.1046/j.1365-3083.2002.01101.x
[2] Anderson, P. (2008). Post-transcriptional control of cytokine production. Nat Immunol 9, 353-359 .10.1038/ni1584
[3] Bandres, E., Cubedo, E., Agirre, X., Malumbres, R., Zarate, R., Ramirez, N., Abajo, A., Navarro, A., Moreno, I., Monzo, M., . (2006). Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5, 29.10.1186/1476-4598-5-29
[4] Bhoj, V.G., and Chen, Z.J. (2009). Ubiquitylation in innate and adaptive immunity. Nature 458, 430-437 .10.1038/nature07959
[5] Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F., and Hannon, G.J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235 .10.1038/nature03049
[6] Garzon, R., Calin, G.A., and Croce, C.M. (2009). MicroRNAs in Cancer. Annu Rev Med 60, 167-179 .10.1146/annurev.med.59.053006.104707
[7] Gatot, J.S., Gioia, R., Chau, T.L., Patrascu, F., Warnier, M., Close, P., Chapelle, J.P., Muraille, E., Brown, K., Siebenlist, U., . (2007). Lipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKKepsilon-dependent Lys(63)-linked polyubiquitination and phosphorylation of TANK/I-TRAF. J Biol Chem 282, 31131-31146 .10.1074/jbc.M701690200
[8] Gregory, R.I., Yan, K.P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-240 .10.1038/nature03120
[9] Guo, H., Ingolia, N.T., Weissman, J.S., and Bartel, D.P. (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840 .10.1038/nature09267
[10] Hake, L.E., Mendez, R., and Richter, J.D. (1998). Specificity of RNA binding by CPEB: requirement for RNA recognition motifs and a novel zinc finger. Mol Cell Biol 18, 685-693 .
[11] Henics, T. (1999). Microfilament-dependent modulation of cytoplasmic protein binding to TNFalpha mRNA AU-rich instability element in human lymphoid cells. Cell Biol Int 23, 561-570 .10.1006/cbir.1999.0418
[12] Holm, L., and Rosenstrom, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Res 38, W545-549 .10.1093/nar/gkq366
[13] Hudson, B.P., Martinez-Yamout, M.A., Dyson, H.J., and Wright, P.E. (2004). Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol 11, 257-264 .10.1038/nsmb738
[14] Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., and Zamore, P.D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834-838 .10.1126/science.1062961
[15] Jiang, S., Zhang, L.F., Zhang, H.W., Hu, S., Lu, M.H., Liang, S., Li, B., Li, Y., Li, D., Wang, E.D., . (2012). A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J 31, 1985-1998 .10.1038/emboj.2012.45
[16] Khader, S.A., Partida-Sanchez, S., Bell, G., Jelley-Gibbs, D.M., Swain, S., Pearl, J.E., Ghilardi, N., Desauvage, F.J., Lund, F.E., and Cooper, A.M. (2006). Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J Exp Med 203, 1805-1815 .10.1084/jem.20052545
[17] Kishimoto, T. (1989). The biology of interleukin-6. Blood 74, 1-10 .
[18] Kishimoto, T. (2005). Interleukin-6: from basic science to medicine--40 years in immunology. Annu Rev Immunol 23, 1-21 .10.1146/annurev.immunol.23.021704.115806
[19] Kolattukudy, P.E., and Niu, J. (2012). Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ Res 110, 174-189 .10.1161/CIRCRESAHA.111.243212
[20] Komander, D., Clague, M.J., and Urbe, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10, 550-563 .10.1038/nrm2731
[21] Kopf, M., Baumann, H., Freer, G., Freudenberg, M., Lamers, M., Kishimoto, T., Zinkernagel, R., Bluethmann, H., and Kohler, G. (1994). Impaired immune and acute-phase responses in interleukin- 6-deficient mice. Nature 368, 339-342 .10.1038/368339a0
[22] Lai, W.S., Kennington, E.A., and Blackshear, P.J. (2002). Interactions of CCCH zinc finger proteins with mRNA: non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J Biol Chem 277, 9606-9613 .10.1074/jbc.M110395200
[23] Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., . (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419 .10.1038/nature01957
[24] Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060 .10.1038/sj.emboj.7600385
[25] Lee, Y.S., and Dutta, A. (2009). MicroRNAs in cancer. Annu Rev Pathol 4,199-227 .10.1146/annurev.pathol.4.110807.092222
[26] Liang, J., Saad, Y., Lei, T., Wang, J., Qi, D., Yang, Q., Kolattukudy, P.E., and Fu, M. (2010). MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J Exp Med 207, 2959-2973 .10.1084/jem.20092641
[27] Liang, J., Wang, J., Azfer, A., Song, W., Tromp, G., Kolattukudy, P.E., and Fu, M. (2008). A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J Biol Chem 283, 6337-6346 .10.1074/jbc.M707861200
[28] Liu, Y.C., Penninger, J., and Karin, M. (2005).Immunity by ubiquitylation: a reversible process of modification . Nat Rev Immunol 5, 941-952 .10.1038/nri1731
[29] Matsushita, K., Takeuchi, O., Standley, D.M., Kumagai, Y., Kawagoe, T., Miyake, T., Satoh, T., Kato, H., Tsujimura, T., Nakamura, H., . (2009). Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185-1190 .10.1038/nature07924
[30] Mizgalska, D., Wegrzyn, P., Murzyn, K., Kasza, A., Koj, A., Jura, J., and Jarzab, B. (2009). Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1beta mRNA. FEBS J 276, 7386-7399 .10.1111/j.1742-4658.2009.07452.x
[31] Naugler, W.E., and Karin, M. (2008). The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 14, 109-119 .10.1016/j.molmed.2007.12.007
[32] Niu, J., Azfer, A., Zhelyabovska, O., Fatma, S., and Kolattukudy, P.E. (2008). Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem 283, 14542-14551 .10.1074/jbc.M802139200
[33] Niu, J., Wang, K., Graham, S., Azfer, A., and Kolattukudy, P.E. (2011). MCP-1-induced protein attenuates endotoxin-induced myocardial dysfunction by suppressing cardiac NF-small ka, CyrillicB activation via inhibition of Ismall ka, CyrillicB kinase activation. J Mol Cell Cardiol 51, 177-186 .10.1016/j.yjmcc.2011.04.018
[34] O'Connell, R.M., Rao, D.S., and Baltimore, D. (2012). microRNA regulation of inflammatory responses. Annu Rev Immunol 30, 295-312 .10.1146/annurev-immunol-020711-075013
[35] O'Neill, L.A., Sheedy, F.J., and McCoy, C.E. (2011). MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11, 163-175 .10.1038/nri2957
[36] Paschoud, S., Dogar, A.M., Kuntz, C., Grisoni-Neupert, B., Richman, L., and Kuhn, L.C. (2006). Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Molecular and cellular biology 26, 8228.10.1128/MCB.01155-06
[37] Qi, D., Huang, S., Miao, R., She, Z.G., Quinn, T., Chang, Y., Liu, J., Fan, D., Chen, Y.E., and Fu, M. (2011). Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress. J Biol Chem 286, 41692-41700 .10.1074/jbc.M111.276006
[38] Rathinam, V.A., Vanaja, S.K., and Fitzgerald, K.A. (2012). Regulation of inflammasome signaling. Nat Immunol 13, 333-332 .10.1038/ni.2237
[39] Reyes-Turcu, F.E., Ventii, K.H., and Wilkinson, K.D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78, 363-397 .10.1146/annurev.biochem.78.082307.091526
[40] Skalniak, L., Mizgalska, D., Zarebski, A., Wyrzykowska, P., Koj, A., and Jura, J. (2009). Regulatory feedback loop between NF-kappaB and MCP-1-induced protein 1 RNase. FEBS J 276, 5892-5905 .10.1111/j.1742-4658.2009.07273.x
[41] Sun, S.C. (2008). Deubiquitylation and regulation of the immune response. Nat Rev Immunol 8, 501-511 .10.1038/nri2337
[42] Suzuki, H.I., Arase, M., Matsuyama, H., Choi, Y.L., Ueno, T., Mano, H., Sugimoto, K., and Miyazono, K. (2011). MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell 44, 424-436 .10.1016/j.molcel.2011.09.012
[43] Tanaka, T., Narazaki, M., and Kishimoto, T. (2012). Therapeutic targeting of the interleukin-6 receptor. Annu Rev Pharmacol Toxicol 52, 199-219 .10.1146/annurev-pharmtox-010611-134715
[44] Taylor, G.A., Carballo, E., Lee, D.M., Lai, W.S., Thompson, M.J., Patel, D.D., Schenkman, D.I., Gilkeson, G.S., Broxmeyer, H.E., Haynes, B.F., . (1996). A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445-454 .10.1016/S1074-7613(00)80411-2
[45] Vinuesa, C.G., Cook, M.C., Angelucci, C., Athanasopoulos, V., Rui, L., Hill, K.M., Yu, D., Domaschenz, H., Whittle, B., Lambe, T., . (2005). A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452-458 .10.1038/nature03555
[46] Volinia, S., Calin, G.A., Liu, C.G., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., . (2006). A microRNA expression signature of human solid tumors defines cancer gene targets.Proc Natl Acad Sci U S A 103, 2257-2261 .10.1073/pnas.0510565103
[47] Vrotsos, E.G., Kolattukudy, P.E., and Sugaya, K. (2009). MCP-1 involvement in glial differentiation of neuroprogenitor cells through APP signaling. Brain Res Bull 79, 97-103 .10.1016/j.brainresbull.2009.01.004
[48] Xu, J., Peng, W., Sun, Y., Wang, X., Xu, Y., Li, X., Gao, G., and Rao, Z. (2012). Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase. Nucleic Acids Res . (In Press).10.1093/nar/gks359
[49] Yang, W. (2011). Nucleases: diversity of structure, function and mechanism. Rev Biophys 44, 1-93 .10.1017/S0033583510000181
[50] Younce, C.W., Azfer, A., and Kolattukudy, P.E. (2009). MCP-1 (monocyte chemotactic protein-1)-induced protein, a recently identified zinc finger protein, induces adipogenesis in 3T3-L1 pre-adipocytes without peroxisome proliferator-activated receptor gamma. J Biol Chem 284, 27620-27628 .10.1074/jbc.M109.025320
[51] Younce, C.W., and Kolattukudy, P.E. (2010). MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP. Biochem J 426, 43-53 .10.1042/BJ20090976
[52] Yu, D., Tan, A.H., Hu, X., Athanasopoulos, V., Simpson, N., Silva, D.G., Hutloff, A., Giles, K.M., Leedman, P.J., Lam, K.P., . (2007). Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450, 299-303 .10.1038/nature06253
[53] Zhang, Y., Wang, Z., Chen, M., Peng, L., Wang, X., Ma, Q., Ma, F., and Jiang, B. (2012). MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol Cancer 11, 23.10.1186/1476-4598-11-23
[54] Zhou, L., Azfer, A., Niu, J., Graham, S., Choudhury, M., Adamski, F.M., Younce, C., Binkley, P.F., and Kolattukudy, P.E. (2006). Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 98, 1177-1185 .10.1161/01.RES.0000220106.64661.71
[55] Zielinski, C.E., Mele, F., Aschenbrenner, D., Jarrossay, D., Ronchi, F., Gattorno, M., Monticelli, S., Lanzavecchia, A., and Sallusto, F. (2012). Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 484, 514-518 .10.1038/nature10957
AI Summary AI Mindmap
PDF(572 KB)

Accesses

Citations

Detail

Sections
Recommended

/