Binding of bacterial secondary messenger molecule c di-GMP is a STING operation

Neil Shaw1,2, Songying Ouyang2, Zhi-Jie Liu2()

PDF(1651 KB)
PDF(1651 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (2) : 117-129. DOI: 10.1007/s13238-012-2071-0
REVIEW
REVIEW

Binding of bacterial secondary messenger molecule c di-GMP is a STING operation

  • Neil Shaw1,2, Songying Ouyang2, Zhi-Jie Liu2()
Author information +
History +

Abstract

Initial skirmishes between the host and pathogen result in spillage of the contents of the bacterial cell. Amongst the spillage, the secondary messenger molecule, cyclic dimeric guanosine monophosphate (c di-GMP), was recently shown to be bound by stimulator of interferon genes (STING). Binding of c di-GMP by STING activates the Tank Binding Kinase (TBK1) mediated signaling cascades that galvanize the body' defenses for elimination of the pathogen. In addition to c di-GMP, STING has also been shown to function in innate immune responses against pathogen associated molecular patterns (PAMPs) originating from the DNA or RNA of pathogens. The pivotal role of STING in host defense is exemplified by the fact that STING-/- mice die upon infection by HSV-1. Thus, STING plays an essential role in innate immune responses against pathogens. This opens up an exciting possibility of targeting STING for development of adjuvant therapies to boost the immune defenses against invading microbes. Similarly, STING could be targeted for mitigating the inflammatory responses augmented by the innate immune system. This review summarizes and updates our current understanding of the role of STING in innate immune responses and discusses the future challenges in delineating the mechanism of STING-mediated responses.

Keywords

innate immune response / adaptor protein / dimeric assembly / crystal structure / c di-GMP

Cite this article

Download citation ▾
Neil Shaw, Songying Ouyang, Zhi-Jie Liu. Binding of bacterial secondary messenger molecule c di-GMP is a STING operation. Prot Cell, 2013, 4(2): 117‒129 https://doi.org/10.1007/s13238-012-2071-0

References

[1] Alexopoulou, L., Holt, A.C., Medzhitov, R., and Flavell, R.A. (2001). Recognition of double-stranded RNA and activation of NF-[kappa]B by Toll-like receptor 3. Nature 413, 732-738 .10.1038/35099560
[2] Barber, G.N. (2011a). Cytoplasmic DNA innate immune pathways. Immunol Rev 243, 99-108 .10.1111/j.1600-065X.2011.01051.x
[3] Barber, G.N. (2011b). Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses.Curr Opin Immunol 23, 10-20 .10.1016/j.coi.2010.12.015
[4] Bowzard, J.B., Ranjan, P., Sambhara, S., and Fujita, T. (2009). Antiviral defense: RIG-Ing the immune system to STING.Cytokine Growth Factor Rev 20, 1-5 .10.1016/j.cytogfr.2009.01.001
[5] Burdette, D.L., Monroe, K.M., Sotelo-Troha, K., Iwig, J.S., Eckert, B., Hyodo, M., Hayakawa, Y., and Vance, R.E. (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515-518 .10.1038/nature10429
[6] Chen, H., Sun, H., You, F., Sun, W., Zhou, X., Chen, L., Yang, J., Wang, Y., Tang, H., Guan, Y., . (2011). Activation of STAT6 by STING is critical for antiviral innate immunity.Cell 147, 436-446 .10.1016/j.cell.2011.09.022
[7] Chien, Y., Kim, S., Bumeister, R., Loo, Y.-M., Kwon, S.W., Johnson, C.L., Balakireva, M.G., Romeo, Y., Kopelovich, L., Gale Jr, M., . (2006). RalB GTPase-mediated activation of the Ik-B family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127, 157-170 .10.1016/j.cell.2006.08.034
[8] Dixit, E., Boulant, S., Zhang, Y., Lee, A.S.Y., Odendall, C., Shum, B., Hacohen, N., Chen, Z.J., Whelan, S.P., Fransen, M., . (2010). Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141, 668-681 .10.1016/j.cell.2010.04.018
[9] Farrar, M.A., Alberola-lla, J., and Perlmutter, R.M. (1996). Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization.Nature 383, 178-181 .10.1038/383178a0
[10] Henao-Mejia, J., Elinav, E., Strowig, T., and Flavell, R.A. (2012). Inflammasomes: far beyond inflammation. Nat Immunol 13, 321-324 .10.1038/ni.2257
[11] Huang, Y.-H., Liu, X.-Y., Du, X.-X., Jiang, Z.-F., and Su, X.-D. (2012). The structural basis for the sensing and binding of cyclic di-GMP by STING.Nat Struct Mol Biol 19, 728-730 .10.1038/nsmb.2333
[12] Ikeda, F., Crosetto, N., and Dikic, I. (2010). What determines the specificity and outcomes of ubiquitin signaling ? Cell 143, 677-681 .10.1016/j.cell.2010.10.026
[13] Ishikawa, H., and Barber, G.N. (2008). STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674-678 .10.1038/nature07317
[14] Ishikawa, H., and Barber, G.N. (2011). The STING pathway and regulation of innate immune signaling in response to DNA pathogens. Cell Mol Life Sci 68, 1157-1165 .10.1007/s00018-010-0605-2
[15] Ishikawa, H., Ma, Z., and Barber, G.N. (2009). STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788-792 .10.1038/nature08476
[16] Jensen, S., and Thomsen, A.R. (2012). Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol 86, 2900-2910 .10.1128/JVI.05738-11
[17] Jin, L., Waterman, P.M., Jonscher, K.R., Short, C.M., Reisdorph, N.A., and Cambier, J.C. (2008). MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals.Mol Cell Biol 28, 5014-5026 .10.1128/MCB.00640-08
[18] Kawai, T., and Akira, S. (2008). Toll-like receptor and RIG-1-like receptor signaling. Ann N Y Acad Sci 1143, 1-20 .10.1196/annals.1443.020
[19] Kelley, L.A., and Sternberg, M.J.E. (2009). Protein structure prediction on the Web: a case study using the Phyre server.Nat Protoc 4, 363-371 .10.1038/nprot.2009.2
[20] Kumagai, Y., Takeuchi, O., and Akira, S. (2008). TLR9 as a key receptor for the recognition of DNA. Advanced Drug Delivery Reviews 60, 795-804 .10.1016/j.addr.2007.12.004
[21] Lu, Y.-C., Yeh, W.-C., and Ohashi, P.S. (2008). LPS/TLR4 signal transduction pathway. Cytokine 42, 145-151 .10.1016/j.cyto.2008.01.006
[22] M?nsson L.E., Melican, K., Boekel, J., Sandoval, R.M., Hautefort, I., Tanner, G.A., Molitoris, B.A., and Richter-Dahlfors, A. (2007). Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. Cell Microbiol 9, 413-424 .10.1111/j.1462-5822.2006.00799.x
[23] Nakhaei, P., Hiscott, J., and Lin, R. (2010). STING-ing the antiviral pathway. J Mol Cell Biol 2, 110-112 .10.1093/jmcb/mjp048
[24] Nazmi, A., Mukhopadhyay, R., Dutta, K., and Basu, A. (2012). STING mediates neuronal innate immune response following Japanese Encephalitis Virus infection. Sci Rep 2, 347.10.1038/srep00347
[25] Ouyang, S., Song, X., Wang, Y., Ru, H., Shaw, N., Jiang, Y., Niu, F., Zhu, Y., Qiu, W., Parvatiyar, K., . (2012). Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity 36, 1073-1086 .10.1016/j.immuni.2012.03.019
[26] Prantner, D., Darville, T., and Nagarajan, U.M. (2010). Stimulator of IFN gene is critical for induction of IFN-beta during Chlamydia muridarum infection. J Immunol 184, 2551-2560 .10.4049/jimmunol.0903704
[27] Ross, C., Hatzoglou, A., Parrini, M.-C., White, M.A., Chavrier, P., and Camonis, J. (2006). RalB mobilizes the exocyst to drive cell migration. Mol Cell Biol 26, 727-734 .10.1128/MCB.26.2.727-734.2006
[28] Rubartelli, A., and Lotze, M.T. (2007). Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immun 28, 429-436 .10.1016/j.it.2007.08.004
[29] Saitoh, T., Fujita, N., Hayashi, T., Takahara, K., Satoh, T., Lee, H., Matsunaga, K., Kageyama, S., Omori, H., Noda, T., . (2009). Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A 106, 20842-20846 .10.1073/pnas.0911267106
[30] Sauer, J.D., Sotelo-Troha, K., von Moltke, J., Monroe, K.M., Rae, C.S., Brubaker, S.W., Hyodo, M., Hayakawa, Y., Woodward, J.J., Portnoy, D.A., . (2011). The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides.Infect Immun 79, 688-694 .10.1128/IAI.00999-10
[31] Shang, G., Zhu, D., Li, N., Zhang, J., Zhu, C., Lu, D., Liu, C., Yu, Q., Zhao, Y., Xu, S., . (2012). Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat Struct Mol Biol 19, 725-727 .
[32] Shu, C., Yi, G., Watts, T., Kao, C.C., and Li, P. (2012). Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat Struct Mol Biol 19, 722-724 .
[33] Sun, W., Li, Y., Chen, L., Chen, H., You, F., Zhou, X., Zhou, Y., Zhai, Z., Chen, D., and Jiang, Z. (2009). ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A 106, 8653-8658 .
[34] Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21, 335-376 .
[35] Tanaka, Y., and Chen, Z.J. (2012). STING Specifies IRF3 Phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 5, ra20.
[36] Tsuchida, T., Zou, J., Saitoh, T., Kumar, H., Abe, T., Matsuura, Y., Kawai, T., and Akira, S. (2010). The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double- stranded DNA. Immunity 33, 765-776 .
[37] Wang, J., Liu, B., Wang, N., Lee, Y.M., Liu, C., and Li, K. (2011). TRIM56 is a virus- and interferon-inducible E3 ubiquitin ligase that restricts pestivirus infection. J Virol 85, 3733-3745 .
[38] Yan, N., Regalado-Magdos, A.D., Stiggelbout, B., Lee-Kirsch, M.A., and Lieberman, J. (2010). The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11, 1005-1013 .
[39] Yin, Q., Tian, Y., Kabaleeswaran, V., Jiang, X., Tu, D., Eck, M.J., Chen, Z.J., and Wu, H. (2012). Cyclic di-GMP sensing via the innate immune signaling protein STING.Mol Cell 46, 735-745 .
[40] Yoneyama, M., and Fujita, T. (2010). Recognition of viral nucleic acids in innate immunity. Rev Med Virol 20, 4-22 .
[41] Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M., and Chen, Z.J. (2010). Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315-330 .
[42] Zhang, Z., Yuan, B., Bao, M., Lu, N., Kim, T., and Liu, Y.J. (2011). The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol . 12, 959-965 .
[43] Zhong, B., Yang, Y., Li, S., Wang, Y.Y., Li, Y., Diao, F., Lei, C., He, X., Zhang, L., Tien, P., . (2008). The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538-550 .
[44] Zhong, B., Zhang, L., Lei, C., Li, Y., Mao, A.P., Yang, Y., Wang, Y.Y., Zhang, X.L., and Shu, H.B. (2009). The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30, 397-407 .
AI Summary AI Mindmap
PDF(1651 KB)

Accesses

Citations

Detail

Sections
Recommended

/