[1] Amin, D.N., Campbell, M.R., and Moasser, M.M. (2010a). The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics.
Semin Cell Dev Biol 21, 944-950 .
10.1016/j.semcdb.2010.08.007[2] Amin, D.N., Sergina, N., Ahuja, D., McMahon, M., Blair, J.A., Wang, D., Hann, B., Koch, K.M., Shokat, K.M., and Moasser, M.M. (2010b). Resiliency and vulnerability in the HER2-HER3 tumorigenic driver.
Sci Transl Med 2, 16ra17.
10.1126/scitranslmed.3000389[3] Baselga, J., and Swain, S.M. (2009). Novel anticancer targets: revisiting ERBB2 and discovering ERBB3.
Nat Rev Cancer 9, 463-475 .
10.1038/nrc2656[4] Berger, M.B., Mendrola, J.M., and Lemmon, M.A. (2004). ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface.
FEBS Lett 569, 332-336 .
10.1016/j.febslet.2004.06.014[5] Campbell, M.R., Amin, D., and Moasser, M.M. (2010). HER3 comes of age: new insights into its functions and role in signaling, tumor biology, and cancer therapy.
Clin Cancer Res 16, 1373-1383 .
10.1158/1078-0432.CCR-09-1218[6] Chan, S.D., Antoniucci, D.M., Fok, K.S., Alajoki, M.L., Harkins, R.N., Thompson, S.A., and Wada, H.G. (1995). Heregulin activation of extracellular acidification in mammary carcinoma cells is associated with expression of HER2 and HER3.
J Biol Chem 270, 22608-22613 .
10.1074/jbc.270.38.22608[7] Choi, B.-K., Fan, X., Deng, H., Zhang, N. and An, Z. (2012), ERBB3 (HER3) is a key sensor in the regulation of ERBB-mediated signaling in both low and high ERBB2 (HER2) expressing cancer cells.
Cancer Medicine . doi: 10.1002/cam4.10
10.1002/cam4.10[8] Engelman, J.A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J.O., Lindeman, N., Gale, C.M., Zhao, X., Christensen, J.,
. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling.
Science 316, 1039-1043 .
10.1126/science.1141478[9] Huang, Z., Brdlik, C., Jin, P., and Shepard, H.M. (2009). A pan-HER approach for cancer therapy: background, current status and future development.
Expert Opin Biol Ther 9, 97-110 .
10.1517/14712590802630427[10] Jura, N., Shan, Y., Cao, X., Shaw, D.E., and Kuriyan, J. (2009a). Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3
. Proc Natl Acad Sci U S A 106, 21608-21613 .
10.1073/pnas.0912101106[11] Jura, N., Endres, N.F., Engel, K., Deindl, S., Das, R., Lamers, M.H., Wemmer, D.E., Zhang, X., and Kuriyan, J. (2009b). Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment.
Cell 137, 1293-1307 .
10.1016/j.cell.2009.04.025[12] Kong, A., Calleja, V., Leboucher, P., Harris, A., Parker, P.J., and Larijani, B. (2008). HER2 oncogenic function escapes EGFR tyrosine kinase inhibitors via activation of alternative HER receptors in breast cancer cells.
PLoS One 3, e2881.
10.1371/journal.pone.0002881[13] Krug, A.W., Schuster, C., Gassner, B., Freudinger, R., Mildenberger, S., Troppmair, J., and Gekle, M. (2002). Human epidermal growth factor receptor-1 expression renders Chinese hamster ovary cells sensitive to alternative aldosterone signaling.
J Biol Chem 277, 45892-45897 .
10.1074/jbc.M208851200[14] Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.
Methods 402-408 .
10.1006/meth.2001.1262[15] Mattoon, D.R., Lamothe, B., Lax, I., and Schlessinger, J. (2004). The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway.
BMC Biol 2, 24.
10.1186/1741-7007-2-24[16] Narayan, M., Wilken, J.A., Harris, L.N., Baron, A.T., Kimbler, K.D., and Maihle, N.J. (2009). Trastuzumab-induced HER reprogramming in "resistant" breast carcinoma cells.
Cancer Res 69, 2191-2194 .
10.1158/0008-5472.CAN-08-1056[17] Rothe, M., Treder, M., Hartmann, S., Freeman, D., and Radinsky, B. (2007). Antibodies directed to HER-3 and uses thereof.
In World Intellectual Property Organization, W.I.P. Organization, ed .
[18] Schoeberl, B., Pace, E.A., Fitzgerald, J.B., Harms, B.D., Xu, L., Nie, L., Linggi, B., Kalra, A., Paragas, V., Bukhalid, R.,
. (2009). Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis.
Sci Signal 2, ra31.
10.1126/scisignal.2000352[19] Shepard, H.M., Brdlik, C., and Schreiber, H. (2008). Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family.
The Journal of Clinical Investigation 118, 3574-3581 .
10.1172/JCI36049[20] Sierke, S.L., Cheng, K., Kim, H.H., and Koland, J.G. (1997). Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein.
Biochem J 322 (Pt 3), 757-763 .
[21] Suenaga, A., Takada, N., Hatakeyama, M., Ichikawa, M., Yu, X., Tomii, K., Okimoto, N., Futatsugi, N., Narumi, T., Shirouzu, M.,
. (2005). Novel mechanism of interaction of p85 subunit of phosphatidylinositol 3-kinase and ErbB3 receptor-derived phosphotyrosyl peptides.
J Biol Chem 280, 1321-1326 .
10.1074/jbc.M410436200[22] Wheeler, D.L., Huang, S., Kruser, T.J., Nechrebecki, M.M., Armstrong, E.A., Benavente, S., Gondi, V., Hsu, K.T., and Harari, P.M. (2008). Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members.
Oncogene 27, 3944-3956 .
10.1038/onc.2008.19[23] Zhang, N., Liu, L., Dan Dumitru, C., Cummings, N.R., Cukan, M., Jiang, Y., Li, Y., Li, F., Mitchell, T., Mallem, M.R.,
. (2011). Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study.
MAbs 3, 298-98 .
10.4161/mabs.3.3.15532