Sample preparation for the analysis of membrane proteomes by mass spectrometry

Xianchun Wang, Songping Liang()

PDF(290 KB)
PDF(290 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (9) : 661-668. DOI: 10.1007/s13238-012-2062-1
REVIEW
REVIEW

Sample preparation for the analysis of membrane proteomes by mass spectrometry

  • Xianchun Wang, Songping Liang()
Author information +
History +

Abstract

The low abundance and highly hydrophobic nature of most membrane proteins make their analysis more difficult than that for common soluble proteins. Successful membrane protein identification is largely dependent on the sample preparation including the enrichment and dissolution of the membrane proteins. A series of conventional and newly developed methods has been applied to the enrichment of low-abundance membrane proteins at membrane and/or protein levels and to the dissolution of hydrophobic membrane proteins. However, all the existing methods have inherent advantages and limitations. Up to now, there has been no unique method that can universally be employed to solve all the problems and more efforts are needed in improving sample preparation for the analysis of membrane proteomes.

Keywords

sample preparation / membrane proteome / enrichment / extraction / digestion / mass spectrometry

Cite this article

Download citation ▾
Xianchun Wang, Songping Liang. Sample preparation for the analysis of membrane proteomes by mass spectrometry. Prot Cell, 2012, 3(9): 661‒668 https://doi.org/10.1007/s13238-012-2062-1

References

[1] Andersen, P., and Heron, I. (1993). Simultaneous electroelution of whole SDS-polyacrylamide gels for the direct cellular analysis of complex protein mixtures. J Immunol Methods 161, 29-39 .10.1016/0022-1759(93)90195-D.
[2] Bartee, E., McCormack, A., and Früh, K. (2006). Quantitative membrane proteomics reveals new cellular targets of viral immune modulators. PLoS Pathog 2, 975-988 .10.1371/journal.ppat.0020107
[3] Bienvenut, W.V., Sanchez, J. C., Karmime, A., Rouge, V., Rose, K., Binz, P.A., and Hochstrasser, D.F. (1999). Toward a clinical molecular scanner for proteome research: parallel protein chemical processing before and during western blot. Anal Chem 71, 4800-4807 .10.1021/ac990448m
[4] Blonder, J., Goshe, M.B., Moore R.J., Pasa-Tolic, L., Masselon, C.D., Lipton, M.S., and Smith, R.D. (2002). Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography- tandem mass spectrometry. J Proteome Res 1, 351-360 .10.1021/pr0255248
[5] Botelho, D., Wall, M.J., Vieira, D.B., Fitzsimmons, S., Liu, F., and Doucette, A. (2010). Top-down and bottom-up proteomics of SDS-containing solutions following mass-based separation. J Proteome Res 9, 2863-2870 .
[6] Bunai, K., Nozaki, M., Hamano, M., and Ogane, S. (2003). Proteomic analysis of acrylamide gel separated proteins immobilized on polyvinylidene difluoride membranes following proteolytic digestion in the presence of 80% acetonitrile. Proteomics 3, 1738-1749 .10.1002/pmic.200300529
[7] Cao, R., Liu, Y.S., Chen, P., Lv, R., Song, Q., Sheng, T.T., He, Q.Y., Wang, Y., Wang, X.C., and Liang, S.P. (2010). Improvement of hydrophobic integral membrane protein identification by mild performic acid oxidation-assisted digestion. Anal Biochem 407, 196-204 .10.1016/j.ab.2010.08.020
[8] Cao, R., Li, X., Liu, Z., Peng, X., Hu, W., Wang, X., Chen, P., Xie, J., and Liang, S. (2006). Integration of a two-phase partition method into proteomics research on rat liver plasma membrane proteins. J Proteome Res 5, 634-642 .10.1021/pr050387a
[9] Eichacker, L.A., Granvogl, B., Mirus, O., Muller, B.C., Miess, C., and Schleiff, E. (2004). Hiding behind hydrophobicity: transmembrane segments in mass spectrometry. J Biol Chem 279, 50915-50922 .10.1074/jbc.M405875200
[10] Finlayson, A.J. (1969). The performic acid oxidation of egg-white lysozyme. Can J Bio Chem 47, 31-37 .10.1139/o69-006
[11] Fischer, F., Wolters, D., R?gner, M., and Poetsch, A. (2006). Toward the complete membrane proteome: high coverage of integral membrane proteins through transmembrane peptide detection. Mol Cell Proteomics 5, 444-453 .10.1074/mcp.M500234-MCP200
[12] Hirs, C.H.W. (1967). Performic acid oxidation, Methods Enzymol 11, 197-199 .10.1016/S0076-6879(67)11021-5
[13] Hudgin, R.L., and Ashwell, G. (1974). Studies on the role of glycosyltransferases in the hepatic binding of asialoglycoproteins. J Biol Chem 249, 7269-7272 .
[14] Jonsson, A.P., Aissouni, Y., Palmberg, C., Percipalle, P., Percipalle, P., Nordling, E., Daneholt, B., Jornvall, H., and Bergman, T. (2001). Recovery of gel-separated proteins for in-solution digestion and mass spectrometry. Anal Chem 73, 5370-5377 .10.1021/ac010486h
[15] Liebler, D.C., and Ham, A.J. (2009). Spin filter-based sample preparation for shotgun proteomics. Nat Methods 6, 785.10.1038/nmeth1109-785a
[16] Lin, Y., Liu, H., Liu, Z.H., Wang, X.C., and Liang, S.P. (2012). Shotgun analysis of membrane proteomes using a novel combinative strategy of solution-based sample preparation coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 901, 18-24 .10.1016/j.jchromb.2012.05.035
[17] Lin, Y., Liu, Y., Li, J.J., Zhao, Y., He, Q.Z., Han, W.J., Chen, P., Wang, X.C., and Liang, S.P. (2010). Evaluation and optimization of removal of an acid-insoluble surfactant for shotgun analysis of membrane proteome. Electrophoresis 31, 2705-2713 .10.1002/elps.201000161
[18] Lin, Y., Li, Y., Liu, Y., Han, W.J., He, Q.Z., Li, J.L., Chen, P., Wang, X.C., and Liang, S.P. (2009). Improvement of gel-separated protein identification by DMF-assisted digestion and peptide recovery after electroblotting. Electrophoresis 30, 3626-3635 .10.1002/elps.200900070
[19] Lin, Y., Zhou, J., Bi, D., Chen, P., Wang , X.C., and Liang , S.P. (2008). Sodium deoxycholate-assisted tryptic digestion and identification of proteolytically resistant proteins. Anal Biochem 377, 259-266 .10.1016/j.ab.2008.03.009
[20] Liu, T., Martin, A.M., Sinai, A.P., and Lynn, B.C. (2008). Three-layer sandwich gel electrophoresis: a method of salt removal and protein concentration in proteome analysis. J Proteome Res 7, 4256-4265 .10.1021/pr800182b
[21] Liu, Y., Lin, Y., Yan, Y.Z., Li, J.L., He, Q.Z., Chen, P., Wang, X.C., and Liang, S.P. (2012). Electrophoretically-driven SDS removal and protein fractionation in the shotgun analysis of membrane proteomes. Electrophoresis 33, 316-324 .10.1002/elps.201100364
[22] Li, X., Jia, X., Xie, C., Lin, Y., Cao, R., He, Q., Chen, P., Wang, X., and Liang, S. (2009). Development of cationic colloidal silica- coated magnetic nanospheres for highly selective and rapid enrichment of plasma membrane fractions for proteomics analysis. Biotechnol Appl Biochem 54, 213-320 .10.1042/BA20090187
[23] Luque-Garcia, J.L., Zhou, G., Spellman, D.S., Sun, T.T., and Neubert, T. A. (2008). Analysis of electroblotted proteins by mass spectrometry: protein identification after Western blotting. Mol Cell Proteomics 7, 308-314 .10.1074/mcp.M700415-MCP200
[24] Luque-Garcia, J.L., Zhou, G., Sun, T.T., and Neubert, T.A. (2006). Use of nitrocellulose membranes for protein characterization by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 78, 5102-5108 .10.1021/ac060344t
[25] Lu, X.N., and Zhu, H.N. (2005). Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol Cell Proteomics 4, 1948-1958 .10.1074/mcp.M500138-MCP200
[26] Manza, L.L., Stamer S.L., Ham A.J.L., Codreanu S.G., and Liebler, D.C. (2005) Sample preparation and digestion for proteomic analyses using spin filters. Proteomics 5, 1742-1745 .10.1002/pmic.200401063
[27] Marmagne, A., Rouet, M.A., Ferro, M., Rolland, N., Alconm, C., Joyard, J., Garin, J., Barbier-Brygoo, H., and Ephritikhine, G. (2004). Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol Cell Proteomics 3, 675-691 .10.1074/mcp.M400001-MCP200
[28] Masuda, T.,Tomita, M., and Ishihama, Y. (2008). Phase transfer surfactant- aided trypsin digestion for membrane proteome analysis. J Proteome Res 7, 731-740 .10.1021/pr700658q
[29] Morré, D.J., and Morré, D.M. (1989). Preparation of mammalian plasma membranes by aqueous two-phase partition. Biotechniques 7, 946-948 .
[30] Nielsen, P. A., Olsen, J.V., Podtelejnikov, A.V., Andersen, J.R., Mann, M., and Wi?niewski, J.R. (2005). Proteomic mapping of brain plasma membrane proteins. Mol Cell Proteomics 4, 402-408 .10.1074/mcp.T500002-MCP200
[31] Pesavento, J.J., Garcia, B.A., Streeky, J.A., Kelleher, N.L., and Mizzen, C.A. (2007). Mild performic acid oxidation enhances chromatographic and top down mass spectrometric analyses of histones. Mol Cell Proteomics 6, 1510-1526 .10.1074/mcp.M600404-MCP200
[32] Puchades, M., Westman, A., Blennow, K., and Davidsson, P. (1999). Removal of sodium dodecyl sulfate from protein samples prior to matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom 13, 344-349 .10.1002/(SICI)1097-0231(19990315)13:5<344::AID-RCM489>3.0.CO;2-V
[33] Reinders, J., Zahedi, R.P., Pfanner, N., Meisinger, C., and Sickmann, A. (2006). Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res . 5, 1543-1554 .10.1021/pr050477f
[34] Reynolds, J.A., and Tanford, C. (1970). The gross conformation of protein-sodium dodecyl sulfate complexes. J Biol Chem 245, 5161-5165 .
[35] Schindler, J., Lewandrowski, U., Sickmann, A., and Friauf, E. (2006). Proteomic analysis of brain plasma membrane isolated by affinity two-phase partitioning. Mol Cell Proteomics 5, 390-400 .10.1074/mcp.T500017-MCP200
[36] Schindler, J., and Nothwang, H.G. (2006). Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. Proteomics 6, 5409-5417 .10.1002/pmic.200600243
[37] Speers, A.E., and Wu, C.C. (2007). Proteomics of integral membrane proteins-theory and application. Chem Rev 107, 3687-3714 .10.1021/cr068286z
[38] Walter, H., Walter, H., Brooks, D.E., and Fisher, D. (1985). Partitioning in aqueous two-phase systems: theory, methods, uses and applications to biotechnology. (Orlando, Academic Press), pp. 327.
[39] Washburn, M.P., Wolters, D., and Yates III, J.R. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol . 19, 242-247 .10.1038/85686
[40] Wi?niewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample preparation method for proteome analysis. Nat Methods 6, 359-362 .10.1038/nmeth.1322
[41] Wu, C.C., MacCoss, M.J., Howell, K.E., Yates, J.R. 3rd. (2003). A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21, 532-538 .
[42] Xiong, X., Huang, S., Zhang, H., Li, J.J., Shen, J.Y., Xiong, J.X., Lin, Y., Jiang, L.P., Wang, X.C., and Liang, S.P. (2009). Enrichment and proteomic analysis of plasma membrane from rat dorsal root ganglion neurons. Proteome Sci 7, 41-50 .10.1186/1477-5956-7-41
[43] Zhang, L., Wang, X., Peng, X., Wei, Y., Cao, R., Liu, Z., Xiong, J., Ying, X., Chen, P., and Liang S. (2007). Immunoaffinity purification of plasma membrane with secondary antibody superparamagnetic beads for proteomic analysis. J Proteome Res 6, 34-43 .10.1021/pr060069r
[44] Zhou, J., Li, J.L., Li, J.J., Chen, P., Wang, X.C., and Liang, S.P. (2010a). Dried polyacrylamide gel absorption: A method for efficient elimination of the interferences from SDS-solubilized protein samples in mass spectrometry-based proteome analysis. Electrophoresis 31, 3816-3822 .10.1002/elps.201000255
[45] Zhou, J., Lin, Y., Deng, X.C., Shen, J.Y., He, Q.Y., Chen, P., Wang, X.C., and Liang, S.P. (2008). Development and application of a two-phase, on-membrane digestion method in the analysis of membrane proteome. J Proteome Res 7, 1778-1783 .10.1021/pr070526j
[46] Zhou, J., Xiong, J., Li, J., Huang, S., Zhang, H., He, Q., Lin, Y., Chen, P., Wang, X., and Liang, S. (2010b). Gel absorption-based sample preparation for the analysis of membrane proteome by mass spectrometry. Anal Biochem 404, 204-210 .10.1016/j.ab.2010.05.013
[47] Zhou, J., Zhou, T.Y., Cao, R., Liu, Z., Shen, J.Y., Chen, P., Wang, X.C., and Liang, S.P. (2006). Evaluation of the application of sodium deoxycholate to proteomic analysis of rat hippocaampal plasma membrane. J Proteome Res 5, 2547-2553 .10.1021/pr060112a
AI Summary AI Mindmap
PDF(290 KB)

Accesses

Citations

Detail

Sections
Recommended

/