Herpesviral infection and Toll-like receptor 2

Ming-sheng Cai1,2, Mei-li Li3, Chun-fu Zheng1()

PDF(343 KB)
PDF(343 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (8) : 590-601. DOI: 10.1007/s13238-012-2059-9
REVIEW
REVIEW

Herpesviral infection and Toll-like receptor 2

  • Ming-sheng Cai1,2, Mei-li Li3, Chun-fu Zheng1()
Author information +
History +

Abstract

In the last decade, substantial progress has been made in understanding the molecular mechanisms involved in the initial host responses to viral infections. Herpesviral infections can provoke an inflammatory cytokine response, however, the innate pathogen-sensing mechanisms that transduce the signal for this response are poorly understood. In recent years, it has become increasingly evident that the Toll-like receptors (TLRs), which are germline-encoded pattern recognition receptors (PRRs), function as potent sensors for infection. TLRs can induce the activation of the innate immunity by recruiting specific intracellular adaptor proteins to initiate signaling pathways, which then culminating in activation of the nuclear factor kappa B (NF-κB) and interferon-regulatory factors (IRFs) that control the transcription of genes encoding type I interferon (IFN I) and other inflammatory cytokines. Furthermore, activation of innate immunity is critical for mounting adaptive immune responses. In parallel, common mechanisms used by viruses to counteract TLR-mediated responses or to actively subvert these pathways that block recognition and signaling through TLRs for their own benefit are emerging. Recent findings have demonstrated that TLR2 plays a crucial role in initiating the inflammatory process, and surprisingly that the response TLR2 triggers might be overzealous in its attempt to counter the attack by the virus. In this review, we summarize and discuss the recent advances about the specific role of TLR2 in triggering inflammatory responses in herpesvirus infection and the consequences of the alarms raised in the host that they are assigned to protect.

Keywords

herpesviruses / innate immune / Toll-like receptor (TLR) / TLR2

Cite this article

Download citation ▾
Ming-sheng Cai, Mei-li Li, Chun-fu Zheng. Herpesviral infection and Toll-like receptor 2. Prot Cell, 2012, 3(8): 590‒601 https://doi.org/10.1007/s13238-012-2059-9

References

[1] Akira, S., and Takeda, K. (2004). Toll-like receptor signalling. Nat Rev Immunol 4, 499-511 .10.1038/nri1391
[2] Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2, 675-680 .10.1038/90609
[3] Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801 .10.1016/j.cell.2006.02.015
[4] Aliprantis, A.O., Yang, R.B., Mark, M.R., Suggett, S., Devaux, B., Radolf, J.D., Klimpel, G.R., Godowski, P., and Zychlinsky, A. (1999). Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285, 736-739 .10.1126/science.285.5428.736
[5] Aravalli, R.N., Hu, S., Rowen, T.N., Palmquist, J.M., and Lokensgard, J.R. (2005). Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol 175, 4189-4193 .
[6] Ariza, M.E., Glaser, R., Kaumaya, P.T., Jones, C., and Williams, M.V. (2009). The EBV-encoded dUTPase activates NF-kappa B through the TLR2 and MyD88-dependent signaling pathway. J Immunol 182, 851-859 .
[7] Armien, A.G., Hu, S., Little, M.R., Robinson, N., Lokensgard, J.R., Low, W.C., and Cheeran, M.C. (2010). Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis. Brain Pathol 20, 738-750 .10.1111/j.1750-3639.2009.00354.x
[8] Arvin, A.M., Koropchak, C.M., Williams, B.R., Grumet, F.C., and Foung, S.K. (1986). Early immune response in healthy and immunocompromised subjects with primary varicella-zoster virus infection. J Infect Dis 154, 422-429 .10.1093/infdis/154.3.422
[9] Barbalat, R., Lau, L., Locksley, R.M., and Barton, G.M. (2009). Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat Immunol 10, 1200-1207 .10.1038/ni.1792
[10] Bieback, K., Lien, E., Klagge, I.M., Avota, E., Schneider-Schaulies, J., Duprex, W.P., Wagner, H., Kirschning, C.J., Ter Meulen, V., and Schneider-Schaulies, S. (2002). Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76, 8729-8736 .10.1128/JVI.76.17.8729-8736.2002
[11] Bochud, P.Y., Magaret, A.S., Koelle, D.M., Aderem, A., and Wald, A. (2007). Polymorphisms in TLR2 are associated with increased viral shedding and lesional rate in patients with genital herpes simplex virus Type 2 infection. J Infect Dis 196, 505-509 .10.1086/519693
[12] Boehme, K.W., Guerrero, M., and Compton, T. (2006). Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J Immunol 177, 7094-7102 .
[13] Boivin, G., Coulombe, Z., and Rivest, S. (2002). Intranasal herpes simplex virus type 2 inoculation causes a profound thymidine kinase dependent cerebral inflammatory response in the mouse hindbrain. Eur J Neurosci 16, 29-43 .10.1046/j.1460-9568.2002.02057.x
[14] Bowie, A.G., and Unterholzner, L. (2008). Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 8, 911-922 .10.1038/nri2436
[15] Buwitt-Beckmann, U., Heine, H., Wiesmuller, K.H., Jung, G., Brock, R., Akira, S., and Ulmer, A.J. (2005). Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur J Immunol 35, 282-289 .10.1002/eji.200424955
[16] Chang, J.H., McCluskey, P.J., and Wakefield, D. (2006). Toll-like receptors in ocular immunity and the immunopathogenesis of inflammatory eye disease. Br J Ophthalmol 90, 103-108 .10.1136/bjo.2005.072686
[17] Chuang, T., and Ulevitch, R.J. (2001). Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 1518, 157-161 .10.1016/S0167-4781(00)00289-X
[18] Chuang, T.H., and Ulevitch, R.J. (2000). Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw 11, 372-378 .
[19] Compton, T., Kurt-Jones, E.A., Boehme, K.W., Belko, J., Latz, E., Golenbock, D.T., and Finberg, R.W. (2003). Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol 77, 4588-4596 .10.1128/JVI.77.8.4588-4596.2003
[20] Cooper, A., Tal, G., Lider, O., and Shaul, Y. (2005). Cytokine induction by the hepatitis B virus capsid in macrophages is facilitated by membrane heparan sulfate and involves TLR2. J Immunol 175, 3165-3176 .
[21] Crumpacker CS, W.S. (2005). Cytomegalovirus. In Principles and Practice of Infectious Diseases, .B.J. Mandell GL, Dolin R, ed. (New York, Churchill Livingstone), pp. 1786-1801 .
[22] Dolganiuc, A., Oak, S., Kodys, K., Golenbock, D.T., Finberg, R.W., Kurt-Jones, E., and Szabo, G. (2004). Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology 127, 1513-1524 .10.1053/j.gastro.2004.08.067
[23] Du, X., Poltorak, A., Wei, Y., and Beutler, B. (2000). Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw 11, 362-371 .
[24] Duesberg, U., von dem Bussche, A., Kirschning, C., Miyake, K., Sauerbruch, T., and Spengler, U. (2002). Cell activation by synthetic lipopeptides of the hepatitis C virus (HCV)-core protein is mediated by toll like receptors (TLRs) 2 and 4. Immunol Lett 84, 89-95 .10.1016/S0165-2478(02)00178-5
[25] Dziarski, R., Tapping, R.I., and Tobias, P.S. (1998). Binding of bacterial peptidoglycan to CD14. J Biol Chem 273, 8680-8690 .10.1074/jbc.273.15.8680
[26] Elsawa, S.F., and Bost, K.L. (2004). Murine gamma-herpesvirus-68-induced IL-12 contributes to the control of latent viral burden, but also contributes to viral-mediated leukocytosis. J Immunol 172, 516-524 .
[27] Espevik, T., Otterlei, M., Skjak-Braek, G., Ryan, L., Wright, S.D., and Sundan, A. (1993). The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. Eur J Immunol 23, 255-261 .10.1002/eji.1830230140
[28] Feire, A.L., Koss, H., and Compton, T. (2004). Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc Natl Acad Sci U S A 101, 15470-15475 .10.1073/pnas.0406821101
[29] Fitch, M.T., and van de Beek, D. (2008). Drug Insight: steroids in CNS infectious diseases-new indications for an old therapy. Nat Clin Pract Neurol 4, 97-104 .10.1038/ncpneuro0713
[30] Gaudreault, E., Fiola, S., Olivier, M., and Gosselin, J. (2007). Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2. J Virol 81, 8016-8024 .10.1128/JVI.00403-07
[31] Gay, N.J., and Gangloff, M. (2007). Structure and function of Toll receptors and their ligands. Annu Rev Biochem 76, 141-165 .10.1146/annurev.biochem.76.060305.151318
[32] Glaser, R., Litsky, M.L., Padgett, D.A., Baiocchi, R.A., Yang, E.V., Chen, M., Yeh, P.E., Green-Church, K.B., Caligiuri, M.A., and Williams, M.V. (2006). EBV-encoded dUTPase induces immune dysregulation: Implications for the pathophysiology of EBV-associated disease. Virology 346, 205-218 .10.1016/j.virol.2005.10.034
[33] Gordon, S. (2002). Pattern recognition receptors: doubling up for the innate immune response. Cell 111, 927-930 .10.1016/S0092-8674(02)01201-1
[34] Guo, W., and Giancotti, F.G. (2004). Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5, 816-826 .10.1038/nrm1490
[35] Haller, O., Kochs, G., and Weber, F. (2006). The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344, 119-130 .10.1016/j.virol.2005.09.024
[36] Harwani, S.C., Lurain, N.S., Zariffard, M.R., and Spear, G.T. (2007). Differential inhibition of human cytomegalovirus (HCMV) by toll-like receptor ligands mediated by interferon-beta in human foreskin fibroblasts and cervical tissue. Virol J 4, 133.10.1186/1743-422X-4-133
[37] Haziot, A., Ferrero, E., Kontgen, F., Hijiya, N., Yamamoto, S., Silver, J., Stewart, C.L., and Goyert, S.M. (1996). Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4, 407-414 .10.1016/S1074-7613(00)80254-X
[38] Heise, M.T., and Virgin, H.W.t. (1995). The T-cell-independent role of gamma interferon and tumor necrosis factor alpha in macrophage activation during murine cytomegalovirus and herpes simplex virus infections. J Virol 69, 904-909 .
[39] Hellman, J., Tehan, M.M., and Warren, H.S. (2003). Murein lipoprotein, peptidoglycan-associated lipoprotein, and outer membrane protein A are present in purified rough and smooth lipopolysaccharides. J Infect Dis 188, 286-289 .10.1086/376453
[40] Herbst-Kralovetz, M., and Pyles, R. (2006). Toll-like receptors, innate immunity and HSV pathogenesis. Herpes 13, 37-41 .
[41] Hiscott, J., Nguyen, T.L., Arguello, M., Nakhaei, P., and Paz, S. (2006). Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 25, 6844-6867 .10.1038/sj.onc.1209941
[42] Horng, T., Barton, G.M., Flavell, R.A., and Medzhitov, R. (2002). The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329-333 .10.1038/nature01180
[43] Hornung, V., Rothenfusser, S., Britsch, S., Krug, A., Jahrsdorfer, B., Giese, T., Endres, S., and Hartmann, G. (2002). Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168, 4531-4537 .
[44] Ingalls, R.R., Heine, H., Lien, E., Yoshimura, A., and Golenbock, D. (1999). Lipopolysaccharide recognition, CD14, and lipopolysaccharide receptors. Infect Dis Clin North Am 13, 341-353 , vii.10.1016/S0891-5520(05)70078-7
[45] Janeway, C.A., Jr. (1989). Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 4 Pt 1, 1-13 .10.1101/SQB.1989.054.01.003
[46] Jiang, Z., Georgel, P., Du, X., Shamel, L., Sovath, S., Mudd, S., Huber, M., Kalis, C., Keck, S., Galanos, C., . (2005). CD14 is required for MyD88-independent LPS signaling. Nat Immunol 6, 565-570 .10.1038/ni1207
[47] Kawai, T., and Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11, 373-384 .10.1038/ni.1863
[48] Kawai, T., and Akira, S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637-650 .10.1016/j.immuni.2011.05.006
[49] Kijpittayarit, S., Eid, A.J., Brown, R.A., Paya, C.V., and Razonable, R.R. (2007). Relationship between Toll-like receptor 2 polymorphism and cytomegalovirus disease after liver transplantation. Clin Infect Dis 44, 1315-1320 .10.1086/514339
[50] Kinashi, T. (2005). Intracellular signalling controlling integrin activation in lymphocytes. Nat Rev Immunol 5, 546-559 .10.1038/nri1646
[51] Kirschning, C.J., Wesche, H., Merrill Ayres, T., and Rothe, M. (1998). Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med 188, 2091-2097 .10.1084/jem.188.11.2091
[52] Koenig, A., and Wolff, M.H. (2003). Infectibility of separated peripheral blood mononuclear cell subpopulations by varicella-zoster virus (VZV). J Med Virol 70 Suppl 1, S59-63 .10.1002/jmv.10323
[53] Ku, C.L., Yang, K., Bustamante, J., Puel, A., von Bernuth, H., Santos, O.F., Lawrence, T., Chang, H.H., Al-Mousa, H., Picard, C., . (2005). Inherited disorders of human Toll-like receptor signaling: immunological implications. Immunol Rev 203, 10-20 .10.1111/j.0105-2896.2005.00235.x
[54] Kurt-Jones, E.A., Belko, J., Yu, C., Newburger, P.E., Wang, J., Chan, M., Knipe, D.M., and Finberg, R.W. (2005). The role of toll-like receptors in herpes simplex infection in neonates. J Infect Dis 191, 746-748 .10.1086/427339
[55] Kurt-Jones, E.A., Chan, M., Zhou, S., Wang, J., Reed, G., Bronson, R., Arnold, M.M., Knipe, D.M., and Finberg, R.W. (2004). Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A 101, 1315-1320 .10.1073/pnas.0308057100
[56] L, C. (2005). Herpes Simplex Virus. In Principles and Practice of Infectious Diseases, B.J. Mandell GL, Dolin R, ed. (New York, Churchill Livingstone), pp. 1762-1780 .
[57] Lee, H.K., Lee, J., and Tobias, P.S. (2002). Two lipoproteins extracted from Escherichia coli K-12 LCD25 lipopolysaccharide are the major components responsible for Toll-like receptor 2-mediated signaling. J Immunol 168, 4012-4017 .
[58] Lee, R.M., White, M.R., and Hartshorn, K.L. (2006). Influenza a viruses upregulate neutrophil toll-like receptor 2 expression and function. Scand J Immunol 63, 81-89 .10.1111/j.1365-3083.2005.01714.x
[59] Lorenz, E., Mira, J.P., Cornish, K.L., Arbour, N.C., and Schwartz, D.A. (2000). A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 68, 6398-6401 .10.1128/IAI.68.11.6398-6401.2000
[60] Lundberg, P., Ramakrishna, C., Brown, J., Tyszka, J.M., Hamamura, M., Hinton, D.R., Kovats, S., Nalcioglu, O., Weinberg, K., Openshaw, H., . (2008). The immune response to herpes simplex virus type 1 infection in susceptible mice is a major cause of central nervous system pathology resulting in fatal encephalitis. J Virol 82, 7078-7088 .10.1128/JVI.00619-08
[61] Marques, C.P., Cheeran, M.C., Palmquist, J.M., Hu, S., and Lokensgard, J.R. (2008a). Microglia are the major cellular source of inducible nitric oxide synthase during experimental herpes encephalitis. J Neurovirol 14, 229-238 .10.1080/13550280802093927
[62] Marques, C.P., Cheeran, M.C., Palmquist, J.M., Hu, S., Urban, S.L., and Lokensgard, J.R. (2008b). Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis. J Immunol 181, 6417-6426 .
[63] Marques, C.P., Hu, S., Sheng, W., and Lokensgard, J.R. (2006). Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection. Virus Res 121, 1-10 .10.1016/j.virusres.2006.03.009
[64] McGeoch, D.J., Dolan, A., and Ralph, A.C. (2000). Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol 74, 10401-10406 .10.1128/JVI.74.22.10401-10406.2000
[65] McGettrick, A.F., and O'Neill, L.A. (2004). The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction. Mol Immunol 41, 577-582 .10.1016/j.molimm.2004.04.006
[66] Means, T.K., Lien, E., Yoshimura, A., Wang, S., Golenbock, D.T., and Fenton,M.J. (1999). The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol 163, 6748-6755 .
[67] Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nat Rev Immunol 1, 135-145 .10.1038/35100529
[68] Medzhitov, R., Preston-Hurlburt, P., and Janeway, C.A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397 .10.1038/41131
[69] Melchjorsen, J., Pedersen, F.S., Mogensen, S.C., and Paludan, S.R. (2002). Herpes simplex virus selectively induces expression of the CC chemokine RANTES/CCL5 in macrophages through a mechanism dependent on PKR and ICP0. J Virol 76, 2780-2788 .10.1128/JVI.76.6.2780-2788.2002
[70] Michaud, F., Coulombe, F., Gaudreault, E., Kriz, J., and Gosselin, J. (2010). Involvement of TLR2 in recognition of acute gammaherpesvirus-68 infection. PLoS One 5, e13742.10.1371/journal.pone.0013742
[71] Mogensen, T.H., and Paludan, S.R. (2005). Reading the viral signature by Toll-like receptors and other pattern recognition receptors. J Mol Med (Berl) 83, 180-192 .10.1007/s00109-004-0620-6
[72] Morrison, L.A. (2004). The Toll of herpes simplex virus infection. Trends Microbiol 12, 353-356 .10.1016/j.tim.2004.06.001
[73] Ogawa, T., Asai, Y., Hashimoto, M., and Uchida, H. (2002). Bacterial fimbriae activate human peripheral blood monocytes utilizing TLR2, CD14 and CD11a/CD18 as cellular receptors. Eur J Immunol 32, 2543-2550 .10.1002/1521-4141(200209)32:9<2543::AID-IMMU2543>3.0.CO;2-2
[74] Ogus, A.C., Yoldas, B., Ozdemir, T., Uguz, A., Olcen, S., Keser, I., Coskun, M., Cilli, A., and Yegin, O. (2004). The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 23, 219-223 .10.1183/09031936.03.00061703
[75] Olson, J.K., and Miller, S.D. (2004). Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173, 3916-3924 .
[76] Paludan, S.R. (2001). Requirements for the induction of interleukin-6 by herpes simplex virus-infected leukocytes. J Virol 75, 8008-8015 .10.1128/JVI.75.17.8008-8015.2001
[77] Pellett PE, R.B. (2007). The family Herpesviridae: a brief introduction. In Fields virology , H.P. Knipe DM ed. (Philadelphia, Lippincott Williams and Wilkins), pp. 2479-2500 .
[78] Randall, R.E., and Goodbourn, S. (2008). Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89, 1-47 .10.1099/vir.0.83391-0
[79] Reske, A., Pollara, G., Krummenacher, C., Katz, D.R., and Chain, B.M. (2008). Glycoprotein-dependent and TLR2-independent innate immune recognition of herpes simplex virus-1 by dendritic cells. J Immunol 180, 7525-7536 .
[80] Rock, F.L., Hardiman, G., Timans, J.C., Kastelein, R.A., and Bazan, J.F. (1998). A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 95, 588-593 .10.1073/pnas.95.2.588
[81] Roizman B, K.D., Whitley RJ. (2007). Herpes simplex viruses. In Fields Virology, H.P. Knipe DM, ed. (Philadelphia, Lippincott Williams and Wilkins), pp. 2501-2602 .
[82] Roy, C.R., and Mocarski, E.S. (2007). Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol 8, 1179-1187 .10.1038/ni1528
[83] Sabroe, I., Read, R.C., Whyte, M.K., Dockrell, D.H., Vogel, S.N., and Dower, S.K. (2003). Toll-like receptors in health and disease: complex questions remain. J Immunol 171, 1630-1635 .
[84] Sarangi, P.P., Kim, B., Kurt-Jones, E., and Rouse, B.T. (2007). Innate recognition network driving herpes simplex virus-induced corneal immunopathology: role of the toll pathway in early inflammatory events in stromal keratitis. J Virol 81, 11128-11138 .10.1128/JVI.01008-07
[85] Sarawar, S.R., Cardin, R.D., Brooks, J.W., Mehrpooya, M., Tripp, R.A., and Doherty, P.C. (1996). Cytokine production in the immune response to murine gammaherpesvirus 68. J Virol 70, 3264-3268 .
[86] Sarawar, S.R., Lee, B.J., and Giannoni, F. (2004). Cytokines and costimulatory molecules in the immune response to murine gammaherpesvirus-68. Viral Immunol 17, 3-11 .10.1089/088282404322875412
[87] Sato, A., Linehan, M.M., and Iwasaki, A. (2006). Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells. Proc Natl Acad Sci U S A 103, 17343-17348 .10.1073/pnas.0605102103
[88] Schroder, N.W., Morath, S., Alexander, C., Hamann, L., Hartung, T., Zahringer, U., Gobel, U.B., Weber, J.R., and Schumann, R.R. (2003). Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278, 15587-15594 .10.1074/jbc.M212829200
[89] Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., and Kirschning, C.J. (1999). Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274, 17406-17409 .10.1074/jbc.274.25.17406
[90] Schwartz, D.A., and Cook, D.N. (2005). Polymorphisms of the Toll-like receptors and human disease. Clin Infect Dis 41 Suppl 7, S403-407 .10.1086/431985
[91] Sergerie, Y., Boivin, G., Gosselin, D., and Rivest, S. (2007). Delayed but not early glucocorticoid treatment protects the host during experimental herpes simplex virus encephalitis in mice. J Infect Dis 195, 817-825 .10.1086/511987
[92] Simmen, K.A., Singh, J., Luukkonen, B.G., Lopper, M., Bittner, A., Miller, N.E., Jackson, M.R., Compton, T., and Fruh, K. (2001). Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proc Natl Acad Sci U S A 98, 7140-7145 .10.1073/pnas.121177598
[93] Soderberg-Naucler, C., and Nelson, J.Y. (1999). Human cytomegalovirus latency and reactivation- a delicate balance between the virus and its host's immune system. Intervirology 42, 314-321 .10.1159/000053966
[94] Sorensen, L.N., Reinert, L.S., Malmgaard, L., Bartholdy, C., Thomsen, A.R., and Paludan,S.R. (2008). TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain. J Immunol 181, 8604-8612 .
[95] Szomolanyi-Tsuda, E., Liang, X., Welsh, R.M., Kurt-Jones, E.A., and Finberg, R.W. (2006). Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo. J Virol 80, 4286-4291 .10.1128/JVI.80.9.4286-4291.2006
[96] Takeda, K., and Akira, S. (2003). Toll receptors and pathogen resistance. Cell Microbiol 5, 143-153 .10.1046/j.1462-5822.2003.00264.x
[97] Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21, 335-376 .10.1146/annurev.immunol.21.120601.141126
[98] Takeuchi, O., Kawai, T., Sanjo, H., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Takeda, K., and Akira, S. (1999). TLR6: A novel member of an expanding toll-like receptor family. Gene 231, 59-65 .10.1016/S0378-1119(99)00098-0
[99] Texereau, J., Chiche, J.D., Taylor, W., Choukroun, G., Comba, B., and Mira, J.P. (2005). The importance of Toll-like receptor 2 polymorphisms in severe infections. Clin Infect Dis 41 Suppl 7, S408-415 .10.1086/431990
[100] Thorley-Lawson, D.A., Duca, K.A., and Shapiro, M. (2008). Epstein-Barr virus: a paradigm for persistent infection - for real and in virtual reality. Trends Immunol 29, 195-201 .10.1016/j.it.2008.01.006
[101] Torigo, S., Ihara, T., and Kamiya, H. (2000). IL-12, IFN-gamma, and TNF-alpha released from mononuclear cells inhibit the spread of varicella-zoster virus at an early stage of varicella. Microbiol Immunol 44, 1027-1031 .
[102] Town, T., Jeng, D., Alexopoulou, L., Tan, J., and Flavell, R.A. (2006). Microglia recognize double-stranded RNA via TLR3. J Immunol 176, 3804-3812 .
[103] Triantafilou, M., and Triantafilou, K. (2002). Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 23, 301-304 .10.1016/S1471-4906(02)02233-0
[104] Tsuchida, T., Kawai, T., and Akira, S. (2009). Inhibition of IRF3-dependent antiviral responses by cellular and viral proteins. Cell Res 19, 3-4 .10.1038/cr.2009.1
[105] Underhill, D.M., Ozinsky, A., Hajjar,A.M., Stevens, A., Wilson, C.B., Bassetti, M., and Aderem, A. (1999). The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811-815 .10.1038/44605
[106] Unterholzner, L., and Bowie, A.G. (2008). The interplay between viruses and innate immune signaling: recent insights and therapeutic opportunities. Biochem Pharmacol 75, 589-602 .10.1016/j.bcp.2007.07.043
[107] van Lint, A.L., Murawski, M.R., Goodbody, R.E., Severa, M., Fitzgerald, K.A., Finberg, R.W., Knipe, D.M., and Kurt-Jones, E.A. (2010). Herpes simplex virus immediate-early ICP0 protein inhibits Toll-like receptor 2-dependent inflammatory responses and NF-kappaB signaling. J Virol 84, 10802-10811 .10.1128/JVI.00063-10
[108] Vollstedt, S., Franchini, M., Alber, G., Ackermann, M., and Suter, M. (2001). Interleukin-12- and gamma interferon-dependent innate immunity are essential and sufficient for long-term survival of passively immunized mice infected with herpes simplex virus type 1. J Virol 75, 9596-9600 .10.1128/JVI.75.20.9596-9600.2001
[109] von Aulock, S., Schroder, N.W., Traub, S., Gueinzius, K., Lorenz, E., Hartung, T., Schumann, R.R., and Hermann, C. (2004). Heterozygous toll-like receptor 2 polymorphism does not affect lipoteichoic acid-induced chemokine and inflammatory responses. Infect Immun 72, 1828-1831 .10.1128/IAI.72.3.1828-1831.2004
[110] Waldman, W.J., Williams, M.V., Jr., Lemeshow, S., Binkley, P., Guttridge, D., Kiecolt-Glaser, J.K., Knight, D.A., Ladner, K.J., and Glaser, R. (2008). Epstein-Barr virus-encoded dUTPase enhances proinflammatory cytokine production by macrophages in contact with endothelial cells: evidence for depression-induced atherosclerotic risk. Brain Behav Immun 22, 215-223 .10.1016/j.bbi.2007.07.007
[111] Wang, J.P., Kurt-Jones, E.A., Shin, O.S., Manchak, M.D., Levin, M.J., and Finberg, R.W. (2005a). Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol 79, 12658-12666 .10.1128/JVI.79.20.12658-12666.2005
[112] Wang, X., Huang, D.Y., Huong, S.M., and Huang, E.S. (2005b). Integrin alphavbeta3 is a coreceptor for human cytomegalovirus. Nat Med 11, 515-521 .10.1038/nm1236
[113] Weber, F., and Haller, O. (2007). Viral suppression of the interferon system. Biochimie 89, 836-842 .10.1016/j.biochi.2007.01.005
[114] Weber, O. (2000). Novel mouse models for the investigation of experimental drugs with activity against human varicella-zoster virus. Antivir Chem Chemother 11, 283-290 .
[115] Weidemann, B., Schletter, J., Dziarski, R., Kusumoto, S., Stelter, F., Rietschel, E.T., Flad, H.D., and Ulmer, A.J. (1997). Specific binding of soluble peptidoglycan and muramyldipeptide to CD14 on human monocytes. Infect Immun 65, 858-864 .
[116] Whitley RJ, H.J. (2001). Cercopithecine herpesvirus (B virus). In Fields Virology , H.P. Knipe DM, ed. (Philadelphia, Lippincott Williams and Wilkins), pp. 2835-2848 .
[117] Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., and Mathison, J.C. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431-1433 .10.1126/science.1698311
[118] Yang, R.B., Mark, M.R., Gray, A., Huang, A., Xie, M.H., Zhang, M., Goddard, A., Wood, W.I., Gurney, A.L., and Godowski, P.J. (1998). Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395, 284-288 .10.1038/26239
[119] Zarember, K.A., and Godowski, P.J. (2002). Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168, 554-561 .
[120] Zhang, D., Zhang, G., Hayden, M.S., Greenblatt, M.B., Bussey, C., Flavell, R.A., and Ghosh, S. (2004). A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522-1526 .10.1126/science.1094351
[121] Zhang, G., and Ghosh, S. (2001). Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest 107, 13-19 .10.1172/JCI11837
[122] Zhou, S., Kurt-Jones, E.A., Mandell, L., Cerny, A., Chan, M., Golenbock, D.T., and Finberg, R.W. (2005). MyD88 is critical for the development of innate and adaptive immunity during acute lymphocytic choriomeningitis virus infection. Eur J Immunol 35, 822-830 .10.1002/eji.200425730
[123] Zhu, J., Martinez, J., Huang, X., and Yang, Y. (2007). Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-beta. Blood 109, 619-625 .10.1182/blood-2006-06-027136
AI Summary AI Mindmap
PDF(343 KB)

Accesses

Citations

Detail

Sections
Recommended

/