[1] Akira, S., and Takeda, K. (2004). Toll-like receptor signalling.
Nat Rev Immunol 4, 499-511 .
10.1038/nri1391[2] Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity.
Nat Immunol 2, 675-680 .
10.1038/90609[3] Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity.
Cell 124, 783-801 .
10.1016/j.cell.2006.02.015[4] Aliprantis, A.O., Yang, R.B., Mark, M.R., Suggett, S., Devaux, B., Radolf, J.D., Klimpel, G.R., Godowski, P., and Zychlinsky, A. (1999). Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2.
Science 285, 736-739 .
10.1126/science.285.5428.736[5] Aravalli, R.N., Hu, S., Rowen, T.N., Palmquist, J.M., and Lokensgard, J.R. (2005). Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus.
J Immunol 175, 4189-4193 .
[6] Ariza, M.E., Glaser, R., Kaumaya, P.T., Jones, C., and Williams, M.V. (2009). The EBV-encoded dUTPase activates NF-kappa B through the TLR2 and MyD88-dependent signaling pathway.
J Immunol 182, 851-859 .
[7] Armien, A.G., Hu, S., Little, M.R., Robinson, N., Lokensgard, J.R., Low, W.C., and Cheeran, M.C. (2010). Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis.
Brain Pathol 20, 738-750 .
10.1111/j.1750-3639.2009.00354.x[8] Arvin, A.M., Koropchak, C.M., Williams, B.R., Grumet, F.C., and Foung, S.K. (1986). Early immune response in healthy and immunocompromised subjects with primary varicella-zoster virus infection.
J Infect Dis 154, 422-429 .
10.1093/infdis/154.3.422[9] Barbalat, R., Lau, L., Locksley, R.M., and Barton, G.M. (2009). Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands.
Nat Immunol 10, 1200-1207 .
10.1038/ni.1792[10] Bieback, K., Lien, E., Klagge, I.M., Avota, E., Schneider-Schaulies, J., Duprex, W.P., Wagner, H., Kirschning, C.J., Ter Meulen, V., and Schneider-Schaulies, S. (2002). Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling.
J Virol 76, 8729-8736 .
10.1128/JVI.76.17.8729-8736.2002[11] Bochud, P.Y., Magaret, A.S., Koelle, D.M., Aderem, A., and Wald, A. (2007). Polymorphisms in TLR2 are associated with increased viral shedding and lesional rate in patients with genital herpes simplex virus Type 2 infection.
J Infect Dis 196, 505-509 .
10.1086/519693[12] Boehme, K.W., Guerrero, M., and Compton, T. (2006). Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells.
J Immunol 177, 7094-7102 .
[13] Boivin, G., Coulombe, Z., and Rivest, S. (2002). Intranasal herpes simplex virus type 2 inoculation causes a profound thymidine kinase dependent cerebral inflammatory response in the mouse hindbrain.
Eur J Neurosci 16, 29-43 .
10.1046/j.1460-9568.2002.02057.x[14] Bowie, A.G., and Unterholzner, L. (2008). Viral evasion and subversion of pattern-recognition receptor signalling.
Nat Rev Immunol 8, 911-922 .
10.1038/nri2436[15] Buwitt-Beckmann, U., Heine, H., Wiesmuller, K.H., Jung, G., Brock, R., Akira, S., and Ulmer, A.J. (2005). Toll-like receptor 6-independent signaling by diacylated lipopeptides.
Eur J Immunol 35, 282-289 .
10.1002/eji.200424955[16] Chang, J.H., McCluskey, P.J., and Wakefield, D. (2006). Toll-like receptors in ocular immunity and the immunopathogenesis of inflammatory eye disease.
Br J Ophthalmol 90, 103-108 .
10.1136/bjo.2005.072686[17] Chuang, T., and Ulevitch, R.J. (2001). Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells.
Biochim Biophys Acta 1518, 157-161 .
10.1016/S0167-4781(00)00289-X[18] Chuang, T.H., and Ulevitch, R.J. (2000). Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9.
Eur Cytokine Netw 11, 372-378 .
[19] Compton, T., Kurt-Jones, E.A., Boehme, K.W., Belko, J., Latz, E., Golenbock, D.T., and Finberg, R.W. (2003). Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2.
J Virol 77, 4588-4596 .
10.1128/JVI.77.8.4588-4596.2003[20] Cooper, A., Tal, G., Lider, O., and Shaul, Y. (2005). Cytokine induction by the hepatitis B virus capsid in macrophages is facilitated by membrane heparan sulfate and involves TLR2.
J Immunol 175, 3165-3176 .
[21] Crumpacker CS, W.S. (2005). Cytomegalovirus. In Principles and Practice of Infectious Diseases, .B.J. Mandell GL, Dolin R, ed. (
New York,
Churchill Livingstone), pp. 1786-1801 .
[22] Dolganiuc, A., Oak, S., Kodys, K., Golenbock, D.T., Finberg, R.W., Kurt-Jones, E., and Szabo, G. (2004). Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation.
Gastroenterology 127, 1513-1524 .
10.1053/j.gastro.2004.08.067[23] Du, X., Poltorak, A., Wei, Y., and Beutler, B. (2000). Three novel mammalian toll-like receptors: gene structure, expression, and evolution.
Eur Cytokine Netw 11, 362-371 .
[24] Duesberg, U., von dem Bussche, A., Kirschning, C., Miyake, K., Sauerbruch, T., and Spengler, U. (2002). Cell activation by synthetic lipopeptides of the hepatitis C virus (HCV)-core protein is mediated by toll like receptors (TLRs) 2 and 4.
Immunol Lett 84, 89-95 .
10.1016/S0165-2478(02)00178-5[25] Dziarski, R., Tapping, R.I., and Tobias, P.S. (1998). Binding of bacterial peptidoglycan to CD14.
J Biol Chem 273, 8680-8690 .
10.1074/jbc.273.15.8680[26] Elsawa, S.F., and Bost, K.L. (2004). Murine gamma-herpesvirus-68-induced IL-12 contributes to the control of latent viral burden, but also contributes to viral-mediated leukocytosis.
J Immunol 172, 516-524 .
[27] Espevik, T., Otterlei, M., Skjak-Braek, G., Ryan, L., Wright, S.D., and Sundan, A. (1993). The involvement of CD14 in stimulation of cytokine production by uronic acid polymers.
Eur J Immunol 23, 255-261 .
10.1002/eji.1830230140[28] Feire, A.L., Koss, H., and Compton, T. (2004). Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain.
Proc Natl Acad Sci U S A 101, 15470-15475 .
10.1073/pnas.0406821101[29] Fitch, M.T., and van de Beek, D. (2008). Drug Insight: steroids in CNS infectious diseases-new indications for an old therapy.
Nat Clin Pract Neurol 4, 97-104 .
10.1038/ncpneuro0713[30] Gaudreault, E., Fiola, S., Olivier, M., and Gosselin, J. (2007). Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2.
J Virol 81, 8016-8024 .
10.1128/JVI.00403-07[31] Gay, N.J., and Gangloff, M. (2007). Structure and function of Toll receptors and their ligands.
Annu Rev Biochem 76, 141-165 .
10.1146/annurev.biochem.76.060305.151318[32] Glaser, R., Litsky, M.L., Padgett, D.A., Baiocchi, R.A., Yang, E.V., Chen, M., Yeh, P.E., Green-Church, K.B., Caligiuri, M.A., and Williams, M.V. (2006). EBV-encoded dUTPase induces immune dysregulation: Implications for the pathophysiology of EBV-associated disease.
Virology 346, 205-218 .
10.1016/j.virol.2005.10.034[33] Gordon, S. (2002). Pattern recognition receptors: doubling up for the innate immune response.
Cell 111, 927-930 .
10.1016/S0092-8674(02)01201-1[34] Guo, W., and Giancotti, F.G. (2004). Integrin signalling during tumour progression.
Nat Rev Mol Cell Biol 5, 816-826 .
10.1038/nrm1490[35] Haller, O., Kochs, G., and Weber, F. (2006). The interferon response circuit: induction and suppression by pathogenic viruses.
Virology 344, 119-130 .
10.1016/j.virol.2005.09.024[36] Harwani, S.C., Lurain, N.S., Zariffard, M.R., and Spear, G.T. (2007). Differential inhibition of human cytomegalovirus (HCMV) by toll-like receptor ligands mediated by interferon-beta in human foreskin fibroblasts and cervical tissue.
Virol J 4, 133.
10.1186/1743-422X-4-133[37] Haziot, A., Ferrero, E., Kontgen, F., Hijiya, N., Yamamoto, S., Silver, J., Stewart, C.L., and Goyert, S.M. (1996). Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice.
Immunity 4, 407-414 .
10.1016/S1074-7613(00)80254-X[38] Heise, M.T., and Virgin, H.W.t. (1995). The T-cell-independent role of gamma interferon and tumor necrosis factor alpha in macrophage activation during murine cytomegalovirus and herpes simplex virus infections.
J Virol 69, 904-909 .
[39] Hellman, J., Tehan, M.M., and Warren, H.S. (2003). Murein lipoprotein, peptidoglycan-associated lipoprotein, and outer membrane protein A are present in purified rough and smooth lipopolysaccharides.
J Infect Dis 188, 286-289 .
10.1086/376453[40] Herbst-Kralovetz, M., and Pyles, R. (2006). Toll-like receptors, innate immunity and HSV pathogenesis.
Herpes 13, 37-41 .
[41] Hiscott, J., Nguyen, T.L., Arguello, M., Nakhaei, P., and Paz, S. (2006). Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses.
Oncogene 25, 6844-6867 .
10.1038/sj.onc.1209941[42] Horng, T., Barton, G.M., Flavell, R.A., and Medzhitov, R. (2002). The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors.
Nature 420, 329-333 .
10.1038/nature01180[43] Hornung, V., Rothenfusser, S., Britsch, S., Krug, A., Jahrsdorfer, B., Giese, T., Endres, S., and Hartmann, G. (2002). Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides.
J Immunol 168, 4531-4537 .
[44] Ingalls, R.R., Heine, H., Lien, E., Yoshimura, A., and Golenbock, D. (1999). Lipopolysaccharide recognition, CD14, and lipopolysaccharide receptors.
Infect Dis Clin North Am 13, 341-353 , vii.
10.1016/S0891-5520(05)70078-7[45] Janeway, C.A., Jr. (1989). Approaching the asymptote? Evolution and revolution in immunology.
Cold Spring Harb Symp Quant Biol 4 Pt 1, 1-13 .
10.1101/SQB.1989.054.01.003[46] Jiang, Z., Georgel, P., Du, X., Shamel, L., Sovath, S., Mudd, S., Huber, M., Kalis, C., Keck, S., Galanos, C.,
. (2005). CD14 is required for MyD88-independent LPS signaling.
Nat Immunol 6, 565-570 .
10.1038/ni1207[47] Kawai, T., and Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors.
Nat Immunol 11, 373-384 .
10.1038/ni.1863[48] Kawai, T., and Akira, S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity.
Immunity 34, 637-650 .
10.1016/j.immuni.2011.05.006[49] Kijpittayarit, S., Eid, A.J., Brown, R.A., Paya, C.V., and Razonable, R.R. (2007). Relationship between Toll-like receptor 2 polymorphism and cytomegalovirus disease after liver transplantation.
Clin Infect Dis 44, 1315-1320 .
10.1086/514339[50] Kinashi, T. (2005). Intracellular signalling controlling integrin activation in lymphocytes.
Nat Rev Immunol 5, 546-559 .
10.1038/nri1646[51] Kirschning, C.J., Wesche, H., Merrill Ayres, T., and Rothe, M. (1998). Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide.
J Exp Med 188, 2091-2097 .
10.1084/jem.188.11.2091[52] Koenig, A., and Wolff, M.H. (2003). Infectibility of separated peripheral blood mononuclear cell subpopulations by varicella-zoster virus (VZV).
J Med Virol 70 Suppl 1, S59-63 .
10.1002/jmv.10323[53] Ku, C.L., Yang, K., Bustamante, J., Puel, A., von Bernuth, H., Santos, O.F., Lawrence, T., Chang, H.H., Al-Mousa, H., Picard, C.,
. (2005). Inherited disorders of human Toll-like receptor signaling: immunological implications.
Immunol Rev 203, 10-20 .
10.1111/j.0105-2896.2005.00235.x[54] Kurt-Jones, E.A., Belko, J., Yu, C., Newburger, P.E., Wang, J., Chan, M., Knipe, D.M., and Finberg, R.W. (2005). The role of toll-like receptors in herpes simplex infection in neonates.
J Infect Dis 191, 746-748 .
10.1086/427339[55] Kurt-Jones, E.A., Chan, M., Zhou, S., Wang, J., Reed, G., Bronson, R., Arnold, M.M., Knipe, D.M., and Finberg, R.W. (2004). Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis.
Proc Natl Acad Sci U S A 101, 1315-1320 .
10.1073/pnas.0308057100[56] L, C. (2005). Herpes Simplex Virus. In Principles and Practice of Infectious Diseases, B.J. Mandell GL, Dolin R, ed. (
New York,
Churchill Livingstone), pp. 1762-1780 .
[57] Lee, H.K., Lee, J., and Tobias, P.S. (2002). Two lipoproteins extracted from Escherichia coli K-12 LCD25 lipopolysaccharide are the major components responsible for Toll-like receptor 2-mediated signaling.
J Immunol 168, 4012-4017 .
[58] Lee, R.M., White, M.R., and Hartshorn, K.L. (2006). Influenza a viruses upregulate neutrophil toll-like receptor 2 expression and function.
Scand J Immunol 63, 81-89 .
10.1111/j.1365-3083.2005.01714.x[59] Lorenz, E., Mira, J.P., Cornish, K.L., Arbour, N.C., and Schwartz, D.A. (2000). A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection.
Infect Immun 68, 6398-6401 .
10.1128/IAI.68.11.6398-6401.2000[60] Lundberg, P., Ramakrishna, C., Brown, J., Tyszka, J.M., Hamamura, M., Hinton, D.R., Kovats, S., Nalcioglu, O., Weinberg, K., Openshaw, H.,
. (2008). The immune response to herpes simplex virus type 1 infection in susceptible mice is a major cause of central nervous system pathology resulting in fatal encephalitis.
J Virol 82, 7078-7088 .
10.1128/JVI.00619-08[61] Marques, C.P., Cheeran, M.C., Palmquist, J.M., Hu, S., and Lokensgard, J.R. (2008a). Microglia are the major cellular source of inducible nitric oxide synthase during experimental herpes encephalitis.
J Neurovirol 14, 229-238 .
10.1080/13550280802093927[62] Marques, C.P., Cheeran, M.C., Palmquist, J.M., Hu, S., Urban, S.L., and Lokensgard, J.R. (2008b). Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis.
J Immunol 181, 6417-6426 .
[63] Marques, C.P., Hu, S., Sheng, W., and Lokensgard, J.R. (2006). Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection.
Virus Res 121, 1-10 .
10.1016/j.virusres.2006.03.009[64] McGeoch, D.J., Dolan, A., and Ralph, A.C. (2000). Toward a comprehensive phylogeny for mammalian and avian herpesviruses.
J Virol 74, 10401-10406 .
10.1128/JVI.74.22.10401-10406.2000[65] McGettrick, A.F., and O'Neill, L.A. (2004). The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction.
Mol Immunol 41, 577-582 .
10.1016/j.molimm.2004.04.006[66] Means, T.K., Lien, E., Yoshimura, A., Wang, S., Golenbock, D.T., and Fenton,M.J. (1999). The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors.
J Immunol 163, 6748-6755 .
[67] Medzhitov, R. (2001). Toll-like receptors and innate immunity.
Nat Rev Immunol 1, 135-145 .
10.1038/35100529[68] Medzhitov, R., Preston-Hurlburt, P., and Janeway, C.A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.
Nature 388, 394-397 .
10.1038/41131[69] Melchjorsen, J., Pedersen, F.S., Mogensen, S.C., and Paludan, S.R. (2002). Herpes simplex virus selectively induces expression of the CC chemokine RANTES/CCL5 in macrophages through a mechanism dependent on PKR and ICP0.
J Virol 76, 2780-2788 .
10.1128/JVI.76.6.2780-2788.2002[70] Michaud, F., Coulombe, F., Gaudreault, E., Kriz, J., and Gosselin, J. (2010). Involvement of TLR2 in recognition of acute gammaherpesvirus-68 infection.
PLoS One 5, e13742.
10.1371/journal.pone.0013742[71] Mogensen, T.H., and Paludan, S.R. (2005). Reading the viral signature by Toll-like receptors and other pattern recognition receptors.
J Mol Med (Berl) 83, 180-192 .
10.1007/s00109-004-0620-6[72] Morrison, L.A. (2004). The Toll of herpes simplex virus infection.
Trends Microbiol 12, 353-356 .
10.1016/j.tim.2004.06.001[73] Ogawa, T., Asai, Y., Hashimoto, M., and Uchida, H. (2002). Bacterial fimbriae activate human peripheral blood monocytes utilizing TLR2, CD14 and CD11a/CD18 as cellular receptors.
Eur J Immunol 32, 2543-2550 .
10.1002/1521-4141(200209)32:9<2543::AID-IMMU2543>3.0.CO;2-2[74] Ogus, A.C., Yoldas, B., Ozdemir, T., Uguz, A., Olcen, S., Keser, I., Coskun, M., Cilli, A., and Yegin, O. (2004). The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease.
Eur Respir J 23, 219-223 .
10.1183/09031936.03.00061703[75] Olson, J.K., and Miller, S.D. (2004). Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs.
J Immunol 173, 3916-3924 .
[76] Paludan, S.R. (2001). Requirements for the induction of interleukin-6 by herpes simplex virus-infected leukocytes.
J Virol 75, 8008-8015 .
10.1128/JVI.75.17.8008-8015.2001[77] Pellett PE, R.B. (2007). The family Herpesviridae: a brief introduction.
In Fields virology , H.P. Knipe DM ed. (
Philadelphia,
Lippincott Williams and Wilkins), pp. 2479-2500 .
[78] Randall, R.E., and Goodbourn, S. (2008). Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures.
J Gen Virol 89, 1-47 .
10.1099/vir.0.83391-0[79] Reske, A., Pollara, G., Krummenacher, C., Katz, D.R., and Chain, B.M. (2008). Glycoprotein-dependent and TLR2-independent innate immune recognition of herpes simplex virus-1 by dendritic cells.
J Immunol 180, 7525-7536 .
[80] Rock, F.L., Hardiman, G., Timans, J.C., Kastelein, R.A., and Bazan, J.F. (1998). A family of human receptors structurally related to Drosophila Toll.
Proc Natl Acad Sci U S A 95, 588-593 .
10.1073/pnas.95.2.588[81] Roizman B, K.D.,
Whitley RJ. (2007). Herpes simplex viruses. In Fields Virology, H.P. Knipe DM, ed. (
Philadelphia,
Lippincott Williams and Wilkins), pp. 2501-2602 .
[82] Roy, C.R., and Mocarski, E.S. (2007). Pathogen subversion of cell-intrinsic innate immunity.
Nat Immunol 8, 1179-1187 .
10.1038/ni1528[83] Sabroe, I., Read, R.C., Whyte, M.K., Dockrell, D.H., Vogel, S.N., and Dower, S.K. (2003). Toll-like receptors in health and disease: complex questions remain.
J Immunol 171, 1630-1635 .
[84] Sarangi, P.P., Kim, B., Kurt-Jones, E., and Rouse, B.T. (2007). Innate recognition network driving herpes simplex virus-induced corneal immunopathology: role of the toll pathway in early inflammatory events in stromal keratitis.
J Virol 81, 11128-11138 .
10.1128/JVI.01008-07[85] Sarawar, S.R., Cardin, R.D., Brooks, J.W., Mehrpooya, M., Tripp, R.A., and Doherty, P.C. (1996). Cytokine production in the immune response to murine gammaherpesvirus 68.
J Virol 70, 3264-3268 .
[86] Sarawar, S.R., Lee, B.J., and Giannoni, F. (2004). Cytokines and costimulatory molecules in the immune response to murine gammaherpesvirus-68.
Viral Immunol 17, 3-11 .
10.1089/088282404322875412[87] Sato, A., Linehan, M.M., and Iwasaki, A. (2006). Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells.
Proc Natl Acad Sci U S A 103, 17343-17348 .
10.1073/pnas.0605102103[88] Schroder, N.W., Morath, S., Alexander, C., Hamann, L., Hartung, T., Zahringer, U., Gobel, U.B., Weber, J.R., and Schumann, R.R. (2003). Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved.
J Biol Chem 278, 15587-15594 .
10.1074/jbc.M212829200[89] Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., and Kirschning, C.J. (1999). Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2.
J Biol Chem 274, 17406-17409 .
10.1074/jbc.274.25.17406[90] Schwartz, D.A., and Cook, D.N. (2005). Polymorphisms of the Toll-like receptors and human disease.
Clin Infect Dis 41 Suppl 7, S403-407 .
10.1086/431985[91] Sergerie, Y., Boivin, G., Gosselin, D., and Rivest, S. (2007). Delayed but not early glucocorticoid treatment protects the host during experimental herpes simplex virus encephalitis in mice.
J Infect Dis 195, 817-825 .
10.1086/511987[92] Simmen, K.A., Singh, J., Luukkonen, B.G., Lopper, M., Bittner, A., Miller, N.E., Jackson, M.R., Compton, T., and Fruh, K. (2001). Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B.
Proc Natl Acad Sci U S A 98, 7140-7145 .
10.1073/pnas.121177598[93] Soderberg-Naucler, C., and Nelson, J.Y. (1999). Human cytomegalovirus latency and reactivation- a delicate balance between the virus and its host's immune system.
Intervirology 42, 314-321 .
10.1159/000053966[94] Sorensen, L.N., Reinert, L.S., Malmgaard, L., Bartholdy, C., Thomsen, A.R., and Paludan,S.R. (2008). TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain.
J Immunol 181, 8604-8612 .
[95] Szomolanyi-Tsuda, E., Liang, X., Welsh, R.M., Kurt-Jones, E.A., and Finberg, R.W. (2006). Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo.
J Virol 80, 4286-4291 .
10.1128/JVI.80.9.4286-4291.2006[96] Takeda, K., and Akira, S. (2003). Toll receptors and pathogen resistance.
Cell Microbiol 5, 143-153 .
10.1046/j.1462-5822.2003.00264.x[97] Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors.
Annu Rev Immunol 21, 335-376 .
10.1146/annurev.immunol.21.120601.141126[98] Takeuchi, O., Kawai, T., Sanjo, H., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Takeda, K., and Akira, S. (1999). TLR6: A novel member of an expanding toll-like receptor family.
Gene 231, 59-65 .
10.1016/S0378-1119(99)00098-0[99] Texereau, J., Chiche, J.D., Taylor, W., Choukroun, G., Comba, B., and Mira, J.P. (2005). The importance of Toll-like receptor 2 polymorphisms in severe infections.
Clin Infect Dis 41 Suppl 7, S408-415 .
10.1086/431990[100] Thorley-Lawson, D.A., Duca, K.A., and Shapiro, M. (2008). Epstein-Barr virus: a paradigm for persistent infection - for real and in virtual reality.
Trends Immunol 29, 195-201 .
10.1016/j.it.2008.01.006[101] Torigo, S., Ihara, T., and Kamiya, H. (2000). IL-12, IFN-gamma, and TNF-alpha released from mononuclear cells inhibit the spread of varicella-zoster virus at an early stage of varicella.
Microbiol Immunol 44, 1027-1031 .
[102] Town, T., Jeng, D., Alexopoulou, L., Tan, J., and Flavell, R.A. (2006). Microglia recognize double-stranded RNA via TLR3.
J Immunol 176, 3804-3812 .
[103] Triantafilou, M., and Triantafilou, K. (2002). Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster.
Trends Immunol 23, 301-304 .
10.1016/S1471-4906(02)02233-0[104] Tsuchida, T., Kawai, T., and Akira, S. (2009). Inhibition of IRF3-dependent antiviral responses by cellular and viral proteins.
Cell Res 19, 3-4 .
10.1038/cr.2009.1[105] Underhill, D.M., Ozinsky, A., Hajjar,A.M., Stevens, A., Wilson, C.B., Bassetti, M., and Aderem, A. (1999). The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens.
Nature 401, 811-815 .
10.1038/44605[106] Unterholzner, L., and Bowie, A.G. (2008). The interplay between viruses and innate immune signaling: recent insights and therapeutic opportunities.
Biochem Pharmacol 75, 589-602 .
10.1016/j.bcp.2007.07.043[107] van Lint, A.L., Murawski, M.R., Goodbody, R.E., Severa, M., Fitzgerald, K.A., Finberg, R.W., Knipe, D.M., and Kurt-Jones, E.A. (2010). Herpes simplex virus immediate-early ICP0 protein inhibits Toll-like receptor 2-dependent inflammatory responses and NF-kappaB signaling.
J Virol 84, 10802-10811 .
10.1128/JVI.00063-10[108] Vollstedt, S., Franchini, M., Alber, G., Ackermann, M., and Suter, M. (2001). Interleukin-12- and gamma interferon-dependent innate immunity are essential and sufficient for long-term survival of passively immunized mice infected with herpes simplex virus type 1.
J Virol 75, 9596-9600 .
10.1128/JVI.75.20.9596-9600.2001[109] von Aulock, S., Schroder, N.W., Traub, S., Gueinzius, K., Lorenz, E., Hartung, T., Schumann, R.R., and Hermann, C. (2004). Heterozygous toll-like receptor 2 polymorphism does not affect lipoteichoic acid-induced chemokine and inflammatory responses.
Infect Immun 72, 1828-1831 .
10.1128/IAI.72.3.1828-1831.2004[110] Waldman, W.J., Williams, M.V., Jr., Lemeshow, S., Binkley, P., Guttridge, D., Kiecolt-Glaser, J.K., Knight, D.A., Ladner, K.J., and Glaser, R. (2008). Epstein-Barr virus-encoded dUTPase enhances proinflammatory cytokine production by macrophages in contact with endothelial cells: evidence for depression-induced atherosclerotic risk.
Brain Behav Immun 22, 215-223 .
10.1016/j.bbi.2007.07.007[111] Wang, J.P., Kurt-Jones, E.A., Shin, O.S., Manchak, M.D., Levin, M.J., and Finberg, R.W. (2005a). Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2.
J Virol 79, 12658-12666 .
10.1128/JVI.79.20.12658-12666.2005[112] Wang, X., Huang, D.Y., Huong, S.M., and Huang, E.S. (2005b). Integrin alphavbeta3 is a coreceptor for human cytomegalovirus.
Nat Med 11, 515-521 .
10.1038/nm1236[113] Weber, F., and Haller, O. (2007). Viral suppression of the interferon system.
Biochimie 89, 836-842 .
10.1016/j.biochi.2007.01.005[114] Weber, O. (2000). Novel mouse models for the investigation of experimental drugs with activity against human varicella-zoster virus.
Antivir Chem Chemother 11, 283-290 .
[115] Weidemann, B., Schletter, J., Dziarski, R., Kusumoto, S., Stelter, F., Rietschel, E.T., Flad, H.D., and Ulmer, A.J. (1997). Specific binding of soluble peptidoglycan and muramyldipeptide to CD14 on human monocytes.
Infect Immun 65, 858-864 .
[116] Whitley RJ, H.J. (2001). Cercopithecine herpesvirus (B virus).
In Fields Virology , H.P. Knipe DM, ed. (
Philadelphia,
Lippincott Williams and Wilkins), pp. 2835-2848 .
[117] Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., and Mathison, J.C. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein.
Science 249, 1431-1433 .
10.1126/science.1698311[118] Yang, R.B., Mark, M.R., Gray, A., Huang, A., Xie, M.H., Zhang, M., Goddard, A., Wood, W.I., Gurney, A.L., and Godowski, P.J. (1998). Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling.
Nature 395, 284-288 .
10.1038/26239[119] Zarember, K.A., and Godowski, P.J. (2002). Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines.
J Immunol 168, 554-561 .
[120] Zhang, D., Zhang, G., Hayden, M.S., Greenblatt, M.B., Bussey, C., Flavell, R.A., and Ghosh, S. (2004). A toll-like receptor that prevents infection by uropathogenic bacteria.
Science 303, 1522-1526 .
10.1126/science.1094351[121] Zhang, G., and Ghosh, S. (2001). Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity.
J Clin Invest 107, 13-19 .
10.1172/JCI11837[122] Zhou, S., Kurt-Jones, E.A., Mandell, L., Cerny, A., Chan, M., Golenbock, D.T., and Finberg, R.W. (2005). MyD88 is critical for the development of innate and adaptive immunity during acute lymphocytic choriomeningitis virus infection.
Eur J Immunol 35, 822-830 .
10.1002/eji.200425730[123] Zhu, J., Martinez, J., Huang, X., and Yang, Y. (2007). Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-beta.
Blood 109, 619-625 .
10.1182/blood-2006-06-027136