Suppression of GSK3β by ERK mediates lipopolysaccharide induced cell migration in macrophage through β-catenin signaling

Kai Gong1, Fangfang Zhou1,2(), Huizhe Huang1,3, Yandao Gong1, Long Zhang2()

PDF(474 KB)
PDF(474 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (10) : 762-768. DOI: 10.1007/s13238-012-2058-x
COMMUNICATION
COMMUNICATION

Suppression of GSK3β by ERK mediates lipopolysaccharide induced cell migration in macrophage through β-catenin signaling

  • Kai Gong1, Fangfang Zhou1,2(), Huizhe Huang1,3, Yandao Gong1, Long Zhang2()
Author information +
History +

Abstract

We investigate the role of β-catenin signaling in the response of macrophage to lipopolysaccharide (LPS) by using RAW264.7 cells. LPS rapidly stimulated cytosolic β-catenin accumulation. β-catenin mediated transcription was showed to be required for LPS induced gene expression and cell migration. Mechanically, ERK activationprimed GSK3β inactivation by Akt was demonstrated to mediate the LPS induced β-catenin accumulation. Overall, our findings suggest that suppression of GSK3β by ERK stimulates β-catenin signaling therefore contributes to LPS induced cell migration in macrophage activation.

Keywords

LPS / ERK / GSK3b / b-catenin / cell migration

Cite this article

Download citation ▾
Kai Gong, Fangfang Zhou, Huizhe Huang, Yandao Gong, Long Zhang. Suppression of GSK3β by ERK mediates lipopolysaccharide induced cell migration in macrophage through β-catenin signaling. Prot Cell, 2012, 3(10): 762‒768 https://doi.org/10.1007/s13238-012-2058-x

References

[1] Behrens, J., von Kries, J.P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., and Birchmeier, W. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638-642 .10.1038/382638a0
[2] Brunner, E., Peter, O., Schweizer, L., and Basler, K. (1997). pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385, 829-833 .10.1038/385829a0
[3] Carpenter, S., and O'Neill, L.A. (2009). Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Biochem J 422, 1-10 .10.1042/BJ20090616
[4] Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789 .10.1038/378785a0
[5] Ding, Q., Xia, W., Liu, J.C., Yang, J.Y., Lee, D.F., Xia, J., Bartholomeusz, G., Li, Y., Pan, Y., Li, Z., . (2005). Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol Cell 19, 159-170 .10.1016/j.molcel.2005.06.009
[6] Gordon, S. (2003). Alternative activation of macrophages. Nat Rev Immunol 3, 23-35 .10.1038/nri978
[7] Guha, M., and Mackman, N. (2001). LPS induction of gene expression in human monocytes. Cell Signal 13, 85-94 .10.1016/S0898-6568(00)00149-2
[8] Lien, E., Means, T.K., Heine, H., Yoshimura, A., Kusumoto, S., Fukase, K., Fenton, M.J., Oikawa, M., Qureshi, N., Monks, B., . (2000). Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 105, 497-504 .10.1172/JCI8541
[9] Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G.H., Tan, Y., Zhang, Z., Lin, X., and He, X. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837-847 .10.1016/S0092-8674(02)00685-2
[10] Logan, C.Y., and Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20, 781-810 .10.1146/annurev.cellbio.20.010403.113126
[11] Lomaga, M.A., Yeh, W.C., Sarosi, I., Duncan, G.S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S., . (1999). TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13, 1015-1024 .10.1101/gad.13.8.1015
[12] MacDonald, B.T., Tamai, K., and He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17, 9-26 .10.1016/j.devcel.2009.06.016
[13] Means, T.K., Lien, E., Yoshimura, A., Wang, S., Golenbock, D.T., and Fenton, M.J. (1999). The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol 163, 6748-6755 .
[14] Moon, R.T., Kohn, A.D., De Ferrari, G.V., and Kaykas, A. (2004). WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5, 691-701 .10.1038/nrg1427
[15] Nelson, W.J., and Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303, 1483-1487 .10.1126/science.1094291
[16] Nie, J., Wang, H., He, F., and Huang, H. (2010). Nusap1 is essential for neural crest cell migration in zebrafish. Protein Cell 1, 259-266 .10.1007/s13238-010-0036-8
[17] Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., . (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085-2088 .10.1126/science.282.5396.2085
[18] Reya, T., and Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature 434, 843-850 .10.1038/nature03319
[19] Zhang, B., and Ma, J.X. (2010). Wnt pathway antagonists and angiogenesis. Protein Cell 1, 898-906 .10.1007/s13238-010-0112-0
[20] Zhang, J., Zhang, X., Zhang, L., Zhou, F., van Dinther, M., and Ten Dijke, P. (2012a) LRP8 mediates Wnt/beta-catenin signaling and controls osteoblast differentiation. J Bone Miner Res . (In Press)10.1002/jbmr.1661
[21] Zhang, L., Gao, X., Wen, J., Ning, Y., and Chen, Y.G. (2006). Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem 281, 8607-8612 .10.1074/jbc.M600274200
[22] Zhang, L., Huang, H., Zhou, F., Schimmel, J., Pardo, C.G., Zhang, T., Barakat, T.S., Sheppard, K.A., Mickanin, C., Porter, J.A., . (2012b). RNF12 Controls Embryonic Stem Cell Fate and Morphogenesis in Zebrafish Embryos by Targeting Smad7 for Degradation. Mol Cell 46, 650-661 .10.1016/j.molcel.2012.04.003
[23] Zhang, L., Shi, S., Zhang, J., Zhou, F., and ten Dijke, P. Wnt/beta-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression. (2012c).Biochem Biophys Res Commun 419, 83-88 .10.1016/j.bbrc.2012.01.132
[24] Zhang, L., Zhou, F., van Laar, T., Zhang, J., van Dam, H., and Ten Dijke, P. (2011). Fas-associated factor 1 antagonizes Wnt signaling by promoting beta-catenin degradation. Mol Biol Cell 22, 1617-1624 .10.1091/mbc.E10-12-0985
[25] Zhang, L., Zhou, H., Su, Y., Sun, Z., Zhang, H., Zhang, Y., Ning, Y., Chen, Y.G., and Meng, A. (2004). Zebrafish Dpr2 inhibits mesoderm induction by promoting degradation of nodal receptors. Science 306, 114-117 .10.1126/science.1100569
[26] Zhou, F., Huang, H., and Zhang, L. (2012a). Bisindoylmaleimide I enhances osteogenic differentiation. Protein Cell 3, 311-320 .10.1007/s13238-012-2027-4
[27] Zhou, F., Kai, G., Song, B., Ma, T., van Laar, T., Gong, Y., and Zhang, L. (2012b). The APP intracellular domain (AICD) inhibits Wnt signalling and promotes neurite outgrowth. Biochim Biophys Acta 1823, 1233-1241 . 10.1016/j.bbamcr.2012.05.011
[28] Zhou, F., van Laar, T., Huang, H., and Zhang, L. (2011a). APP and APLP1 are degraded through autophagy in response to proteasome inhibition in neuronal cells. Protein Cell 2, 377-383 .10.1007/s13238-011-1047-9
[29] Zhou, F., Zhang, L., van Laar, T., van Dam, H., and Ten Dijke, P. (2011b). GSK3beta inactivation induces apoptosis of leukemia cells by repressing the function of c-Myb. Mol Biol Cell 22, 3533-3540 .10.1091/mbc.E11-06-0483
AI Summary AI Mindmap
PDF(474 KB)

Accesses

Citations

Detail

Sections
Recommended

/