Reactive carbonyl compounds (RCCs) cause aggregation and dysfunction of fibrinogen

Ya-Jie Xu1, Min Qiang1,2, Jin-Ling Zhang1, Ying Liu1, Rong-Qiao He1,3()

PDF(1187 KB)
PDF(1187 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (8) : 627-640. DOI: 10.1007/s13238-012-2057-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Reactive carbonyl compounds (RCCs) cause aggregation and dysfunction of fibrinogen

  • Ya-Jie Xu1, Min Qiang1,2, Jin-Ling Zhang1, Ying Liu1, Rong-Qiao He1,3()
Author information +
History +

Abstract

Fibrinogen is a key protein involved in coagulation and its deposition on blood vessel walls plays an important role in the pathology of atherosclerosis. Although the causes of fibrinogen (fibrin) deposition have been studied in depth, little is known about the relationship between fibrinogen deposition and reactive carbonyl compounds (RCCs), compounds which are produced and released into the blood and react with plasma protein especially under conditions of oxidative stress and inflammation. Here, we investigated the effect of glycolaldehyde on the activity and deposit ion of fibrinogen compared with the common RCCs acrolein, methylglyoxal, glyoxal and malondialdehyde. At the same concentration (1 mmol/L), glycolaldehyde and acrolein had a stronger suppressive effect on fibrinogen activation than the other three RCCs. Fibrinogen aggregated when it was respectively incubated with glycolaldehyde and the other RCCs, as demonstrated by SDS-PAGE, electron microscopy and intrinsic fluorescence intensity measurements. Staining with Congo Red showed that glycolaldehyde- and acroleinfibrinogen distinctly formed amyloid-like aggregations. Furthermore, the five RCCs, particularly glycolaldehyde and acrolein, delayed human plasma coagulation. Only glycolaldehyde showed a markedly suppressive effect on fibrinogenesis, none did the other four RCCs when their physiological blood concentrations were employyed, respectively. Taken together, it is glycolaldehyde that suppresses fibrinogenesis and induces protein aggregation most effectively, suggesting a putative pathological process for fibrinogen (fibrin) deposition in the blood.

Keywords

fibrinogen / acrolein / glycolaldehyde / glyoxal / malondialdehyde / methylglyoxal

Cite this article

Download citation ▾
Ya-Jie Xu, Min Qiang, Jin-Ling Zhang, Ying Liu, Rong-Qiao He. Reactive carbonyl compounds (RCCs) cause aggregation and dysfunction of fibrinogen. Prot Cell, 2012, 3(8): 627‒640 https://doi.org/10.1007/s13238-012-2057-y

References

[1] Ahn, H.J., Zamolodchikov, D., Cortes-Canteli, M., Norris, E.H., Glickman, J.F., and Strickland, S. (2010). Alzheimer's disease peptide beta-amyloid interacts with fibrinogen and induces its oligomerization. Proc Natl Acad Sci U S A 107, 21812-21817 .10.1073/pnas.1010373107
[2] Altieri, D.C., Duperray, A., Plescia, J., Thornton, G.B. and Languino, L.R. (1995). Structural recognition of a novel fibrinogen gamma chain sequence (117-133) by intercellular adhesion molecule-1 mediates leukocyteendothelium interaction. J Bio Chem 270, 696-699 .
[3] Altieri, D.C. (1999). Regulation of leukocyte-endothelium interaction by fibrinogen. Thromb Haemost 82, 781-786 .
[4] Andrades, M.E., Lorenzi, R., Berger, M., Guimar?es, J.A., Moreira, J.C.F. and Dal-Pizzol., F. (2009). Glycolaldehyde induces fibrinogen post-translational modification, delay in clotting and resistance to enzymatic digestion. Chem Biol Interact 478-484 .10.1016/j.cbi.2009.04.005
[5] Anderson, M.M., and Heinecke, J.W. (2003). Production of N(epsilon)-(carboxymethyl)lysine is impaired in mice deficient in NADPH oxidase: a role for phagocyte-derived oxidants in the formation of advanced glycation end products during inflammation. Diabetes 52, 2137-2143 .10.2337/diabetes.52.8.2137
[6] Argraves, W.S., Tanaka, A., Smith, E.P., Twal, W.O., Argraves, K.M., Fan, D.P., and Haudenschild, C.C. (2009). Fibulin-1 and fibrinogen in human atherosclerotic lesions. Histochem Cell Biol 132, 559-565 .10.1007/s00418-009-0628-7
[7] Bunce, L.A., Sporn, L.A., and Francis, C.W. (1992). Endothelial cell spreading on fibrin requires fibrinopeptide B cleavage and amino acid residues 15-42 of the beta chain. J Clin Invest 89, 842-850 .10.1172/JCI115663
[8] Chalupowicz, D.G., Chowdhury, Z.A., Bach, T.L., Barsigian, C. and Martinez, J. (1995). Fibrin II induces endothelial cell capillary tube formation. J Cell Biol 130, 207-215 .10.1083/jcb.130.1.207
[9] de Maat, M.P., Nieuwenhuizen, W., Knot, E.A., van Buuren, H.R., and Swart, G.R. (1995). Measuring plasma fibrinogen levels in patients with liver cirrhosis. The occurrence of proteolytic fibrin(ogen) degradation products and their influence on several fibrinogen assays. Thromb Res 78, 353-362 .10.1016/0049-3848(95)91463-U
[10] Diacovo, T.G., Roth, S.J., Buccola, J.M., Bainton, D.F. and Springer, T.A. (1996). Neutrophil rolling, arrest, and transmigration across activated, surfaceadherent platelets via sequential action of P-selectin and the β2-integrin CD11b/CD18. Blood 88, 146-157 .
[11] Doruk, H., Kaptan, K., Saglam, M., Ateskan, U., Beyan, C., Nevruz, O., Mas, M.R., Kutlu, M., and Kocar, I.H. (2003). The relationship between carotid atherosclerosis and platelet aggregation in elderly. Arch Gerontol Geriat 37, 235-239 .10.1016/S0167-4943(03)00050-5
[12] Duperray, A., Languino, L.R., Plescia, J., McDowall, A., Hogg, N., Craig, A.G., Berendt, A.R., and Altieri, D.C. (1997). Molecular identification of a novel fibrinogen binding site on the first domain of ICAM-1 regulating leukocyteendothelium bridging. J Bio Chem 272, 435-441
[13] Fan, S.T. and Edgington, T.S. (1993). Integrin regulation of leukocyte inflammatory functions. CD11b/CD18 enhancement of the tumor necrosis factor-alpha responses of monocytes. J Immunol 150, 2972-2980 .
[14] Forsyth, C.B., Solovjov, D.A., Ugarova, D.A. and Plow, E.F. (2001). Integrin {alpha}M{beta}2-mediated cell migration to fibrinogen and its recognition peptides. J Exp Med 193, 1123-1134 .10.1084/jem.193.10.1123
[15] Hantgan, R.R. and Hermans, J. (1979). Assembly of fibrin. A light scattering study. J Biol Chem 254, 11272-11281 .
[16] Igarashi, K., Ueda, S., Yoshida, K., and Kashiwagi, K. (2006). Polyamines in renal failure. Amino Acids 31, 477-483 .10.1007/s00726-006-0264-7
[17] Kamath, S. and Lip, G.Y. (2003). Fibrinogen: biochemistry, epidemiology and determinants. QJM: Int J Med 96, 711-729 .10.1093/qjmed/hcg129
[18] Kawamura, M., Heinecke, J.W. and Chait, A. (2000). Increased uptake of alpha-hydroxy aldehyde-modified low density lipoprotein by macrophage scavenger receptors. J Lipid Res 41, 1054-1059 .
[19] Kourie, J.I. and Henry, C.L. (2001). Protein aggregation and deposition: implications for ion channel formation and membrane damage. Croat Med J 42, 359-374 .
[20] Kuhla, B., Haase, C., Flach, K., Luth, H.J., Arendt, T. and Munch, G. (2007). Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation. J Biol Chem 282, 6984-6991 .10.1074/jbc.M609521200
[21] Languino, L.R., Plescia, J., Duperray, A., Brian, A.A., Plow, E.F., Geltosky, J.E. and Altieri, D.C. (1993). Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell 73, 1423-1434 .10.1016/0092-8674(93)90367-Y
[22] Languino, L.R., Duperray, A., Joganic, K.J., Fornaro, M., Thornton, G.B. and Altieri, D.C. (1995). Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proc Natl Acad Sci U S A 92, 1505-1509 .10.1073/pnas.92.5.1505
[23] Lapolla, A., Flamini, R., Lupo, A., Arico, N.C., Rugiu, C., Reitano, R., Tubaro, M., Ragazzi, E., Seraglia, R. and Traldi, P. (2005). Evaluation of glyoxal and methylglyoxal levels in uremic patients under peritoneal dialysis. Ann N Y Acad Sci 1043, 217-224 .10.1196/annals.1333.027
[24] Li, F., Yang, Z., Lu, Y., Wei, Y., Wang, J., Yin, D., and He, R. (2010). Malondialdehyde suppresses cerebral function by breaking homeostasis between excitation and inhibition in turtle Trachemys scripta. PLoS One 5, e15325.10.1371/journal.pone.0015325
[25] Liu, C.Y., Nossel, H.L. and Kaplan, K.L. (1979). The binding of thrombin by fibrin. J Bio Chem254, 10421-10425 .
[26] Liu, Y., Qiang, M., Wei, Y. and He, R. (2011). A novel molecular mechanism for nitrated {alpha}-synuclein-induced cell death. J Mol Cell Biol 3, 239-249 .10.1093/jmcb/mjr011
[27] Martinez, J., Ferber, A., Bach, T.L., and Yaen, C.H. (2001). Interaction of Fibrin with VE-Cadherin. Ann N Y Acad Sci U S A 936, 386-405 10.1111/j.1749-6632.2001.tb03524.x
[28] Nagai, R., Matsumoto, K., Ling, X., Suzuki, H., Araki, T. and Horiuchi, S. (2000). Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes 49, 1714-1723 .10.2337/diabetes.49.10.1714
[29] Nie, C.L., Wang, X.S., Liu, Y., Perrett, S. and He, R.Q. (2007). Amyloid-like aggregates of neuronal tau induced by formaldehyde promote apoptosis of neuronal cells. BMC Neurosci 8, 9.10.1186/1471-2202-8-9
[30] Nielsen, F., Mikkelsen, B.B., Nielsen, J.B., Andersen, H.R. and Grandjean, P. (1997). Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors. Clin Chem 43, 1209-1214 .
[31] Orr, A.W., Sanders, J.M., Bevard, M., Coleman, E., Sarembock, I.J. and Schwartz, M.A. (2005). The subendothelial extracellular matrix modulates NF-kappaB activation by flow: a potential role in atherosclerosis. J Cell Biol 169, 191-202 .10.1083/jcb.200410073
[32] Phillips, D.R., Charo, I.F., Parise, L.V. and Fitzgerald, L.A. (1988). The platelet membrane glycoprotein llb-IIIa complex. Blood 71, 831-843 .
[33] Picklo, M.J., Montine, T.J., Amarnath, V. and Neely, M.D. (2002). Carbonyl toxicology and Alzheimer’s disease. Toxicol Appl Pharmacol 184, 187-197 .10.1006/taap.2002.9506
[34] Reinke, A.A. and Gestwicki, J.E. (2011). Insight into amyloid structure using chemical probes. Chem Biol Drug Des 77, 399-411 .10.1111/j.1747-0285.2011.01110.x
[35] Riedel, T., Suttnar, J., Brynda, E., Houska, M., Medved, L. and Dyr, J.E. (2011). Fibrinopeptides A and B release in the process of surface fibrin formation. Blood 117, 1700-1706 .10.1182/blood-2010-08-300301
[36] RL Perez, J.R. (1995). Fibrin enhances the expression of IL-1 beta by human peripheral blood mononuclear cells. Implications in pulmonary inflammation. J Immunol 154, 1879-1887 .
[37] Rojas Quijano, F.A., Morrow, D., Wise, B.M., Brancia, F.L. and Goux, W.J. (2006). Prediction of nucleating sequences from amyloidogenic propensities of tau-related peptides. Biochem 45, 4638-4652 .10.1021/bi052226q
[38] Rubel, C., Fernandez, G.C., Dran, G., Bompadre, M.B., Isturiz, M.A., and Palermo, M.S. (2001). Fibrinogen promotes neutrophil activation and delays apoptosis. J Immunol 166, 2002-2010 .
[39] Rubel C., Fernandez, G. C., Rosa, F.A., Gómez, S., Bompadre, M.B., Coso, O.A., Isturiz, M.A. and Palermo, M.S. (2002). Soluble fibrinogen modulates neutrophil functionality through the activation of an extracellular signal-regulated kinase-dependent pathway. J Immunol 168, 3527-3535 .
[40] Sans, E., Delachanal, E. and Duperray, A. (2001). Analysis of theroles of ICAM-1 in neutrophil transmigration using a reconstituted mammalian cell expression model: Implication of ICAM-1 cytoplasmic domain and Rho-dependent signaling pathway. J Immunol 166, 544-551 .
[41] Sidelmann, J.J., Gram, J., Jespersen, J. and Kluft, C. (2000). Fibrin clot formation and lysis: basic mechanisms. Seminars in Thromb Haemost 26, 605-618 .10.1055/s-2000-13216
[42] Siebenlist, K.R., Mosesson, M.W., Hernandez, I., Bush, L.A., Di Cera, E., Shainoff, J.R., Di Orio, J.P. and Stojanovic, L. (2005). Studies on the basis for the properties of fibrin produced from fibrinogen-containing gamma' chains. Blood 106, 2730-2736 .10.1182/blood-2005-01-0240
[43] Smiley, S.T., King, J.A. and Hancock, W.W. (2001). Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J Immunol 167, 2887-2894 .
[44] Stoll, G. and Bendszus, M. (2006). Inflammation and atherosclerosis- Novel insights into plaque formation and destabilization. Stroke 37, 1923-1932 .10.1161/01.STR.0000226901.34927.10
[45] Szaba, F.M. and Smiley, S.T. (2002). Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 99, 1053-1059 .10.1182/blood.V99.3.1053
[46] Traverso, N., Menini, S., Maineni, E.P., Patriarca, S., Odetti, P., Cottalasso, D., Marinari, U.M. and Pronzato, M.A. (2004). Malondialdehyde, a lipoperoxidation-derived aldehyde, can bring about secondary oxidative damage to proteins. J Gerontol a-Biol 59, 890-895 .
[47] Tsou, C.L. (1965). Kinetics of irreversible modification of enzyme activity I. The effect of substrate on the rate of binding between an enzyme and a modifier. Acta Biophysica Sinica 5, 398-408 .
[48] Tuluc, F., Garcia, A., Bredetean, O., Meshki, J. and Kunapuli, S.P. (2004). Primary granule release from human neutrophils is potentiated by soluble fibrinogen through a mechanism depending on multiple intracellular signaling pathways American journal of physiology. Cell Physiol 287, C1264-C1272 .10.1152/ajpcell.00177.2004
[49] Uchida, K. (1999). Current status of acrolein as a lipid peroxidation product. Trends Cardiovasc Med 9, 109-113 .10.1016/S1050-1738(99)00016-X
[50] Uchida, K. (2003). 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog lipid Res 42, 318-343 .10.1016/S0163-7827(03)00014-6
[51] Weisel, J.W. (2005). Fibrinogen and fibrin. Adv Protein Chem 70, 247-299 .10.1016/S0065-3233(05)70008-5
[52] Zarkovic, K. (2003). 4-Hdroxynonenal and neurodegenerative diseases. Mol Aspects Med 24, 293-303 .10.1016/S0098-2997(03)00024-4
[53] Zhou, J., Jiang, K., He, R.Q. and Han, Y.M. (1997). Assays of thrombin, hirudin and lumbrokinase with light scattering in the solution of fibrinogen. Acta Biophysica Sinica 13, 531-535 .
AI Summary AI Mindmap
PDF(1187 KB)

Accesses

Citations

Detail

Sections
Recommended

/