MicroRNAs: a new ray of hope for diabetes mellitus

Munish Kumar1(), Sayantan Nath1, Himanshu K Prasad2, G D Sharma2, Yong Li3()

PDF(740 KB)
PDF(740 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (10) : 726-738. DOI: 10.1007/s13238-012-2055-0
REVIEW
REVIEW

MicroRNAs: a new ray of hope for diabetes mellitus

  • Munish Kumar1(), Sayantan Nath1, Himanshu K Prasad2, G D Sharma2, Yong Li3()
Author information +
History +

Abstract

Diabetes mellitus has become one of the most common chronic diseases, thereby posing a major challenge to global health. Characterized by high levels of blood glucose (hyperglycemia), diabetes usually results from a loss of insulin-producing β-cells in the pancreas, leading to a deficiency of insulin (type 1 diabetes), or loss of insulin sensitivity (type 2 diabetes). Both types of diabetes have serious secondary complications, such as microvascular abnormalities, cardiovascular dysfunction, and kidney failure. Various complex factors, such as genetic and environmental factors, are associated with the pathophysiology of diabetes. Over the past two decades, the role of small, single-stranded noncoding microRNAs in various metabolic disorders, especially diabetes mellitus and its complications, has gained widespread attention in the scientific community. Discovered first as an endogenous regulator of development in the nematode Caenorhabditis_elegans, these small RNAs post-transcriptionally suppress mRNA target expression. In this review, we discuss the potential roles of different microRNAs in diabetes and diabetes-related complications.

Keywords

diabetes / diabetic complications / dicer / glucose / insulin / microRNA / pancreas

Cite this article

Download citation ▾
Munish Kumar, Sayantan Nath, Himanshu K Prasad, G D Sharma, Yong Li. MicroRNAs: a new ray of hope for diabetes mellitus. Prot Cell, 2012, 3(10): 726‒738 https://doi.org/10.1007/s13238-012-2055-0

References

[1] Alessi, D.R. (2001). Discovery of PDK1, one of the missing links in insulin signal transduction. Colworth Medal Lecture. Biochem Soc Trans 29, 1-14 .10.1042/BST0290001
[2] Baroukh, N., Ravier, M.A., Loder, M.K., Hill, E.V., Bounacer, A., Scharfmann, R., Rutter, G.A., and Van Obberghen, E. (2007). MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines. J Biol Chem 282, 19575-19588 .10.1074/jbc.M611841200
[3] Baroukh, N.N., and Van Obberghen, E. (2009). Function of microRNA-375 and microRNA-124a in pancreas and brain. FEBS J 276, 6509-6521 .10.1111/j.1742-4658.2009.07353.x
[4] Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 .10.1016/S0092-8674(04)00045-5
[5] Baskerville, S., and Bartel, D.P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241-247 .10.1261/rna.7240905
[6] Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R.H.A., and Cuppen, E. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21-24 .10.1016/j.cell.2004.12.031
[7] Cai, X.Z., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957-1966 .10.1261/rna.7135204
[8] Caporali, A., Meloni, M., Vollenkle, C., Bonci, D., Sala-Newby, G.B., Addis, R., Spinetti, G., Losa, S., Masson, R., Baker, A.H., . (2011). Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123, 282-291 .10.1161/CIRCULATIONAHA.110.952325
[9] Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M.L., Segnalini, P., Gu, Y.S., Dalton, N.D., . (2007). MicroRNA-133 controls cardiac hypertrophy. Nat Med 13, 613-618 .10.1038/nm1582
[10] Conaco, C., Otto, S., Han, J.J., and Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103, 2422-2427 .10.1073/pnas.0511041103
[11] Coppola, T., Frantz, C., Perret-Menoud, V., Gattesco, S., Hirling, H., and Regazzi, R. (2002). Pancreatic β-cell protein granuphilin binds Rab3 and Munc-18 and controls exocytosis. Mol Biol Cell 13, 1906-1915 .10.1091/mbc.02-02-0025
[12] Dieci, G., Fiorino, G., Castelnuovo, M., Teichmann, M., and Pagano, A. (2007). The expanding RNA polymerase III transcriptome. Trends Genet 23, 614-622 .10.1016/j.tig.2007.09.001
[13] El Ouaamari, A., Baroukh, N., Martens, G.A., Lebrun, P., Pipeleers, D., and van Obberghen, E. (2008). miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells. Diabetes 57, 2708-2717 .10.2337/db07-1614
[14] Esau, C., Davis, S., Murray, S.F., Yu, X.X., Pandey, S.K., Pear, M., Watts, L., Booten, S.L., Graham, M., McKay, R., . (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3, 87-98 .10.1016/j.cmet.2006.01.005
[15] Esau, C., Kang, X.L., Peralta, E., Hanson, E., Marcusson, E.G., Ravichandran, L.V., Sun, Y.Q., Koo, S., Perera, R.J., Jain, R., . (2004). MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279, 52361-52365 .10.1074/jbc.C400438200
[16] Frost, R.J.A., and Olson, E.N. (2011). Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs.Proc Natl Acad Sci U S A 108, 21075-21080 .10.1073/pnas.1118922109
[17] Geraldes, P., Hiraoka-Yamamoto, J., Matsumoto, M., Clermont, A., Leitges, M., Marette, A., Aiello, L.P., Kern, T.S., and King, G.L. (2009). Activation of PKC-δ and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 15, 1298-1306 .10.1038/nm.2052
[18] He, A.B., Zhu, L.L., Gupta, N., Chang, Y.S., and Fang, F.D. (2007). Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 21, 2785-2794 .10.1210/me.2007-0167
[19] Hennessy, E., and O'Driscoll, L. (2008). Molecular medicine of microRNAs: structure, function and implications for diabetes. Expert Rev Mol Med 10, e24.10.1017/S1462399408000781
[20] Jordan, S.D., Krüger, M., Willmes, D.M., Redemann, N., Wunderlich, F.T., Br?nneke, H.S., Merkwirth, C., Kashkar, H., Olkkonen, V.M., B?ttger, T., . (2011). Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 13, 434-446 .10.1038/ncb2211
[21] Kalis, M., Bolmeson, C., Esguerra, J.L.S., Gupta, S., Edlund, A., Tormo-Badia, N., Speidel, D., Holmberg, D., Mayans, S., Khoo, N.K.S., . (2011). Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PloS One 6, e29166.10.1371/journal.pone.0029166
[22] Kantharidis, P., Wang, B., Carew, R.M., and Lan, H.Y. (2011). Diabetes complications: the microRNA perspective. Diabetes 60, 1832-1837 .10.2337/db11-0082
[23] Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J.J., and Natarajan, R. (2007). MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104, 3432-3437 .10.1073/pnas.0611192104
[24] Kovacs, B., Lumayag, S., Cowan, C., and Xu, S.B. (2011). MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 52, 4402-4409 .10.1167/iovs.10-6879
[25] Krek, A., Grün, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., . (2005). Combinatorial microRNA target predictions. Nat Genet 37, 495-500 .10.1038/ng1536
[26] Krichevsky, A.M., Sonntag, K.C., Isacson, O., and Kosik, K.S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24, 857-864 .10.1634/stemcells.2005-0441
[27] Kumar, M., Lu, Z., Takwi, A.A.L., Chen, W., Callander, N.S., Ramos, K.S., Young, K.H., and Li, Y. (2011). Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene 30, 843-853 .10.1038/onc.2010.457
[28] Labbaye, C., and Testa, U. (2012). The emerging role of MIR-146A in the control of hematopoiesis, immune function and cancer. J Hematol Oncol 5, 13.10.1186/1756-8722-5-13
[29] Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854 .10.1016/0092-8674(93)90529-Y
[30] Long, J.Y., Wang, Y., Wang, W.J., Chang, B.H.J., and Danesh, F.R. (2010). Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem 285, 23457-23465 .10.1074/jbc.M110.136168
[31] Lovis, P., Gattesco, S., and Regazzi, R. (2008a). Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389, 305-312 .10.1515/BC.2008.026
[32] Lovis, P., Roggli, E., Laybutt, D.R., Gattesco, S., Yang, J.Y., Widmann, C., Abderrahmani, A., and Regazzi, R. (2008b). Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction. Diabetes 57, 2728-2736 .10.2337/db07-1252
[33] Luo, X.B., Lin, H.X., Pan, Z.W., Xiao, J.N., Zhang, Y., Lu, Y.J., Yang, B.F., and Wang, Z.G. (2008). Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J Biol Chem 283, 20045-20052 .10.1074/jbc.M801035200
[34] Lynn, F.C., Skewes-Cox, P., Kosaka, Y., McManus, M.T., Harfe, B.D., and German, M.S. (2007). MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56, 2938-2945 .10.2337/db07-0175
[35] Michels, G., Er, F., Khan, I., Sudkamp, M., Herzig, S., and Hoppe, U.C. (2005). Single-channel properties support a potential contribution of hyperpolarization-activated cyclic nucleotide-gated channels and If to cardiac arrhythmias. Circulation 111, 399-404 .10.1161/01.CIR.0000153799.65783.3A
[36] Mishra, P.K., Tyagi, N., Kumar, M., and Tyagi, S.C. (2009). MicroRNAs as a therapeutic target for cardiovascular diseases. J Cell Mol Med 13, 778-789 .10.1111/j.1582-4934.2009.00744.x
[37] Moosmang, S., Stieber, J., Zong, X.G., Biel, M., Hofmann, F., and Ludwig, A. (2001). Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem 268, 1646-1652 .10.1046/j.1432-1327.2001.02036.x
[38] Muhonen, P., and Holthofer, H. (2009). Epigenetic and microRNA-mediated regulation in diabetes. Nephrol Dial Transplant 24, 1088-1096 .10.1093/ndt/gfn728
[39] Okamura, K., Hagen, J.W., Duan, H., Tyler, D.M., and Lai, E.C. (2007). The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89-100 .10.1016/j.cell.2007.06.028
[40] Pandey, A.K., Agarwal, P., Kaur, K., and Datta, M. (2009). MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem 23, 221-232 .10.1159/000218169
[41] Plaisance, V., Abderrahmani, A., Perret-Menoud, V., Jacquemin, P., Lemaigre, F., and Regazzi, R. (2006). MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281, 26932-26942 .10.1074/jbc.M601225200
[42] Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X.S., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P., . (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226-230 .10.1038/nature03076
[43] Poy, M.N., Hausser, J., Trajkovski, M., Braun, M., Collins, S., Rorsman, P., Zavolan, M., and Stoffel, M. (2009). miR-375 maintains normal pancreatic α- and β-cell mass. Proc Natl Acad Sci U_S_A 106, 5813-5818 .10.1073/pnas.0810550106
[44] Poy, M.N., Spranger, M., and Stoffel, M. (2007). microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab 9(Suppl 2), 67-73 .10.1111/j.1463-1326.2007.00775.x
[45] Roggli, E., Britan, A., Gattesco, S., Lin-Marq, N., Abderrahmani, A., Meda, P., and Regazzi, R. (2010). Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells. Diabetes 59, 978-986 .10.2337/db09-0881
[46] Ruby, J.G., Jan, C.H., and Bartel, D.P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83-86 .10.1038/nature05983
[47] Saal, S., and Harvey, S.J. (2009). MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens 18, 317-323 .10.1097/MNH.0b013e32832c9da2
[48] Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806 .10.1038/414799a
[49] Scherer, P.E., Okamoto, T., Chun, M., Nishimoto, I., Lodish, H.F., and Lisanti, M.P. (1996). Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci U S A 93, 131-135 .10.1073/pnas.93.1.131
[50] Shaw, J.E., Sicree, R.A., and Zimmet, P.Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030.Diabetes Res Clin Pract 87, 4-14 .10.1016/j.diabres.2009.10.007
[51] Shi, B., Sepp-Lorenzino, L., Prisco, M., Linsley, P., deAngelis, T., and Baserga, R. (2007). Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 282, 32582-32590 .10.1074/jbc.M702806200
[52] Stitt-Cavanagh, E., MacLeod, L., and Kennedy, C.R.J. (2009). The podocyte in diabetic kidney disease. Scientific_World_Journal l9, 1127-1139 .10.1100/tsw.2009.133
[53] Tang, X.Q., Tang, G.L., and ?zcan, S. (2008). Role of microRNAs in diabetes. Biochim Biophys Acta 1779, 697-701 .10.1016/j.bbagrm.2008.06.010
[54] Teleman, A.A., and Cohen, S.M. (2006). Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20, 417-422 .10.1101/gad.374406
[55] Trajkovski, M., Hausser, J., Soutschek, J., Bhat, B., Akin, A., Zavolan, M., Heim, M.H., and Stoffel, M. (2011). MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474, 649-653 .10.1038/nature10112
[56] Uchida, T., Myers, M.G., Jr., and White, M.F. (2000). IRS-4 mediates protein kinase B signaling during insulin stimulation without promoting antiapoptosis. Mol Cell Biol 20, 126-138 .10.1128/MCB.20.1.126-138.2000
[57] Vikman, J., Ma, X.S., Hockerman, G.H., Rorsman, P., and Eliasson, L. (2006). Antibody inhibition of synaptosomal protein of 25 kDa (SNAP-25) and syntaxin 1 reduces rapid exocytosis in insulin-secreting cells. J Mol Endocrinol 36, 503-515 .10.1677/jme.1.01978
[58] Wang, H.Y., Gauthier, B.R., Hagenfeldt-Johansson, K.A., Iezzi, M., and Wollheim, C.B. (2002). Foxa2 (HNF3β) controls multiple genes implicated in metabolism-secretion coupling of glucose-induced insulin release. J Biol Chem 277, 17564-17570 .10.1074/jbc.M111037200
[59] Wang, Q., Wang, Y.L., Minto, A.W., Wang, J.H., Shi, Q., Li, X.M., and Quigg, R.J. (2008). MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J 22, 4126-4135 .10.1096/fj.08-112326
[60] Wang, X.H., Qian, R.Z., Zhang, W., Chen, S.F., Jin, H.M., and Hu, R.M. (2009). MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 36, 181-188 .10.1111/j.1440-1681.2008.05057.x
[61] White, M.F. (2002). IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283, E413-E422 .
[62] Wilcox, G. (2005). Insulin and insulin resistance. Clin Biochem Rev 26, 19-39 .
[63] Wilfred, B.R., Wang, W.X., and Nelson, P.T. (2007). Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab 91, 209-217 .10.1016/j.ymgme.2007.03.011
[64] Wolfrum, C., Besser, D., Luca, E., and Stoffel, M. (2003). Insulin regulates the activity of forkhead transcription factor Hnf-3β/ Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization. Proc Natl Acad Sci U_S_A 100, 11624-11629 .10.1073/pnas.1931483100
[65] Xu, P.Z, Vernooy, S.Y., Guo, M., and Hay, B.A. (2003). The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol ,13, 790-795 .10.1016/S0960-9822(03)00250-1
[66] Yang, B.F., Lin, H.X., Xiao, J.N., Lu, Y.J., Luo, X.B., Li, B.X., Zhang, Y., Xu, C.Q., Bai, Y.L., Wang, H.Z., . (2007). The muscle- specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13, 486-491 .10.1038/nm1569
[67] Zampetaki, A., Kiechl, S., Drozdov, I., Willeit, P., Mayr, U., Prokopi, M., Mayr, A., Weger, S., Oberhollenzer, F., Bonora, E., . (2010). Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107, 810-817 .10.1161/CIRCRESAHA.110.226357
[68] Zhao, E.P., Keller, M.P., Rabaglia, M.E., Oler, A.T., Stapleton, D.S., Schueler, K.L., Neto, E.C., Moon, J.Y., Wang, P., Wang, I.M., . (2009). Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice. Mamm Genome 20, 476-485 .10.1007/s00335-009-9217-2
[69] Zhu, H., Shyh-Chang, N., Segrè, A.V., Shinoda, G., Shah, S.P., Einhorn, W.S., Takeuchi, A., Engreitz, J.M., Hagan, J.P., Kharas, M.G., . (2011). The Lin28/let-7 axis regulates glucose metabolism. Cell1 47, 81-94 .10.1016/j.cell.2011.08.033
AI Summary AI Mindmap
PDF(740 KB)

Accesses

Citations

Detail

Sections
Recommended

/