[1] Alessi, D.R. (2001). Discovery of PDK1, one of the missing links in insulin signal transduction.
Colworth Medal Lecture. Biochem Soc Trans 29, 1-14 .
10.1042/BST0290001[2] Baroukh, N., Ravier, M.A., Loder, M.K., Hill, E.V., Bounacer, A., Scharfmann, R., Rutter, G.A., and Van Obberghen, E. (2007). MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines.
J Biol Chem 282, 19575-19588 .
10.1074/jbc.M611841200[3] Baroukh, N.N., and Van Obberghen, E. (2009). Function of microRNA-375 and microRNA-124a in pancreas and brain.
FEBS J 276, 6509-6521 .
10.1111/j.1742-4658.2009.07353.x[4] Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell 116, 281-297 .
10.1016/S0092-8674(04)00045-5[5] Baskerville, S., and Bartel, D.P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes.
RNA 11, 241-247 .
10.1261/rna.7240905[6] Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R.H.A., and Cuppen, E. (2005). Phylogenetic shadowing and computational identification of human microRNA genes.
Cell 120, 21-24 .
10.1016/j.cell.2004.12.031[7] Cai, X.Z., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs.
RNA 10, 1957-1966 .
10.1261/rna.7135204[8] Caporali, A., Meloni, M., Vollenkle, C., Bonci, D., Sala-Newby, G.B., Addis, R., Spinetti, G., Losa, S., Masson, R., Baker, A.H.,
. (2011). Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia.
Circulation 123, 282-291 .
10.1161/CIRCULATIONAHA.110.952325[9] Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M.L., Segnalini, P., Gu, Y.S., Dalton, N.D.,
. (2007). MicroRNA-133 controls cardiac hypertrophy.
Nat Med 13, 613-618 .
10.1038/nm1582[10] Conaco, C., Otto, S., Han, J.J., and Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity.
Proc Natl Acad Sci U S A 103, 2422-2427 .
10.1073/pnas.0511041103[11] Coppola, T., Frantz, C., Perret-Menoud, V., Gattesco, S., Hirling, H., and Regazzi, R. (2002). Pancreatic β-cell protein granuphilin binds Rab3 and Munc-18 and controls exocytosis.
Mol Biol Cell 13, 1906-1915 .
10.1091/mbc.02-02-0025[12] Dieci, G., Fiorino, G., Castelnuovo, M., Teichmann, M., and Pagano, A. (2007). The expanding RNA polymerase III transcriptome.
Trends Genet 23, 614-622 .
10.1016/j.tig.2007.09.001[13] El Ouaamari, A., Baroukh, N., Martens, G.A., Lebrun, P., Pipeleers, D., and van Obberghen, E. (2008). miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells
. Diabetes 57, 2708-2717 .
10.2337/db07-1614[14] Esau, C., Davis, S., Murray, S.F., Yu, X.X., Pandey, S.K., Pear, M., Watts, L., Booten, S.L., Graham, M., McKay, R.,
. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting.
Cell Metab 3, 87-98 .
10.1016/j.cmet.2006.01.005[15] Esau, C., Kang, X.L., Peralta, E., Hanson, E., Marcusson, E.G., Ravichandran, L.V., Sun, Y.Q., Koo, S., Perera, R.J., Jain, R.,
. (2004). MicroRNA-143 regulates adipocyte differentiation.
J Biol Chem 279, 52361-52365 .
10.1074/jbc.C400438200[16] Frost, R.J.A., and Olson, E.N. (2011). Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs
.Proc Natl Acad Sci U S A 108, 21075-21080 .
10.1073/pnas.1118922109[17] Geraldes, P., Hiraoka-Yamamoto, J., Matsumoto, M., Clermont, A., Leitges, M., Marette, A., Aiello, L.P., Kern, T.S., and King, G.L. (2009). Activation of PKC-δ and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy.
Nat Med 15, 1298-1306 .
10.1038/nm.2052[18] He, A.B., Zhu, L.L., Gupta, N., Chang, Y.S., and Fang, F.D. (2007). Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes.
Mol Endocrinol 21, 2785-2794 .
10.1210/me.2007-0167[19] Hennessy, E., and O'Driscoll, L. (2008). Molecular medicine of microRNAs: structure, function and implications for diabetes
. Expert Rev Mol Med 10, e24.
10.1017/S1462399408000781[20] Jordan, S.D., Krüger, M., Willmes, D.M., Redemann, N., Wunderlich, F.T., Br?nneke, H.S., Merkwirth, C., Kashkar, H., Olkkonen, V.M., B?ttger, T.,
. (2011). Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism.
Nat Cell Biol 13, 434-446 .
10.1038/ncb2211[21] Kalis, M., Bolmeson, C., Esguerra, J.L.S., Gupta, S., Edlund, A., Tormo-Badia, N., Speidel, D., Holmberg, D., Mayans, S., Khoo, N.K.S.,
. (2011). Beta-cell specific deletion of
Dicer1 leads to defective insulin secretion and diabetes mellitus.
PloS One 6, e29166.
10.1371/journal.pone.0029166[22] Kantharidis, P., Wang, B., Carew, R.M., and Lan, H.Y. (2011). Diabetes complications: the microRNA perspective.
Diabetes 60, 1832-1837 .
10.2337/db11-0082[23] Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J.J., and Natarajan, R. (2007). MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors.
Proc Natl Acad Sci U S A 104, 3432-3437 .
10.1073/pnas.0611192104[24] Kovacs, B., Lumayag, S., Cowan, C., and Xu, S.B. (2011). MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats.
Invest Ophthalmol Vis Sci 52, 4402-4409 .
10.1167/iovs.10-6879[25] Krek, A., Grün, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M.,
. (2005). Combinatorial microRNA target predictions.
Nat Genet 37, 495-500 .
10.1038/ng1536[26] Krichevsky, A.M., Sonntag, K.C., Isacson, O., and Kosik, K.S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis.
Stem Cells 24, 857-864 .
10.1634/stemcells.2005-0441[27] Kumar, M., Lu, Z., Takwi, A.A.L., Chen, W., Callander, N.S., Ramos, K.S., Young, K.H., and Li, Y. (2011). Negative regulation of the tumor suppressor p53 gene by microRNAs.
Oncogene 30, 843-853 .
10.1038/onc.2010.457[28] Labbaye, C., and Testa, U. (2012). The emerging role of MIR-146A in the control of hematopoiesis, immune function and cancer
. J Hematol Oncol 5, 13.
10.1186/1756-8722-5-13[29] Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene
lin-4 encodes small RNAs with antisense complementarity to
lin-14.
Cell 75, 843-854 .
10.1016/0092-8674(93)90529-Y[30] Long, J.Y., Wang, Y., Wang, W.J., Chang, B.H.J., and Danesh, F.R. (2010). Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions.
J Biol Chem 285, 23457-23465 .
10.1074/jbc.M110.136168[31] Lovis, P., Gattesco, S., and Regazzi, R. (2008a). Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs.
Biol Chem 389, 305-312 .
10.1515/BC.2008.026[32] Lovis, P., Roggli, E., Laybutt, D.R., Gattesco, S., Yang, J.Y., Widmann, C., Abderrahmani, A., and Regazzi, R. (2008b). Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction.
Diabetes 57, 2728-2736 .
10.2337/db07-1252[33] Luo, X.B., Lin, H.X., Pan, Z.W., Xiao, J.N., Zhang, Y., Lu, Y.J., Yang, B.F., and Wang, Z.G. (2008). Down-regulation of
miR-1/miR-133 contributes to re-expression of pacemaker channel genes
HCN2 and
HCN4 in hypertrophic heart.
J Biol Chem 283, 20045-20052 .
10.1074/jbc.M801035200[34] Lynn, F.C., Skewes-Cox, P., Kosaka, Y., McManus, M.T., Harfe, B.D., and German, M.S. (2007). MicroRNA expression is required for pancreatic islet cell genesis in the mouse.
Diabetes 56, 2938-2945 .
10.2337/db07-0175[35] Michels, G., Er, F., Khan, I., Sudkamp, M., Herzig, S., and Hoppe, U.C. (2005). Single-channel properties support a potential contribution of hyperpolarization-activated cyclic nucleotide-gated channels and If to cardiac arrhythmias.
Circulation 111, 399-404 .
10.1161/01.CIR.0000153799.65783.3A[36] Mishra, P.K., Tyagi, N., Kumar, M., and Tyagi, S.C. (2009). MicroRNAs as a therapeutic target for cardiovascular diseases.
J Cell Mol Med 13, 778-789 .
10.1111/j.1582-4934.2009.00744.x[37] Moosmang, S., Stieber, J., Zong, X.G., Biel, M., Hofmann, F., and Ludwig, A. (2001). Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues.
Eur J Biochem 268, 1646-1652 .
10.1046/j.1432-1327.2001.02036.x[38] Muhonen, P., and Holthofer, H. (2009). Epigenetic and microRNA-mediated regulation in diabetes.
Nephrol Dial Transplant 24, 1088-1096 .
10.1093/ndt/gfn728[39] Okamura, K., Hagen, J.W., Duan, H., Tyler, D.M., and Lai, E.C. (2007). The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila.
Cell 130, 89-100 .
10.1016/j.cell.2007.06.028[40] Pandey, A.K., Agarwal, P., Kaur, K., and Datta, M. (2009). MicroRNAs in diabetes: tiny players in big disease.
Cell Physiol Biochem 23, 221-232 .
10.1159/000218169[41] Plaisance, V., Abderrahmani, A., Perret-Menoud, V., Jacquemin, P., Lemaigre, F., and Regazzi, R. (2006). MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells.
J Biol Chem 281, 26932-26942 .
10.1074/jbc.M601225200[42] Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X.S., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P.,
. (2004). A pancreatic islet-specific microRNA regulates insulin secretion.
Nature 432, 226-230 .
10.1038/nature03076[43] Poy, M.N., Hausser, J., Trajkovski, M., Braun, M., Collins, S., Rorsman, P., Zavolan, M., and Stoffel, M. (2009). miR-375 maintains normal pancreatic α- and β-cell mass.
Proc Natl Acad Sci U_S_A 106, 5813-5818 .
10.1073/pnas.0810550106[44] Poy, M.N., Spranger, M., and Stoffel, M. (2007). microRNAs and the regulation of glucose and lipid metabolism
. Diabetes Obes Metab 9(Suppl 2), 67-73 .
10.1111/j.1463-1326.2007.00775.x[45] Roggli, E., Britan, A., Gattesco, S., Lin-Marq, N., Abderrahmani, A., Meda, P., and Regazzi, R. (2010). Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells.
Diabetes 59, 978-986 .
10.2337/db09-0881[46] Ruby, J.G., Jan, C.H., and Bartel, D.P. (2007). Intronic microRNA precursors that bypass Drosha processing.
Nature 448, 83-86 .
10.1038/nature05983[47] Saal, S., and Harvey, S.J. (2009). MicroRNAs and the kidney: coming of age.
Curr Opin Nephrol Hypertens 18, 317-323 .
10.1097/MNH.0b013e32832c9da2[48] Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism.
Nature 414, 799-806 .
10.1038/414799a[49] Scherer, P.E., Okamoto, T., Chun, M., Nishimoto, I., Lodish, H.F., and Lisanti, M.P. (1996). Identification, sequence, and expression of caveolin-2 defines a caveolin gene family.
Proc Natl Acad Sci U S A 93, 131-135 .
10.1073/pnas.93.1.131[50] Shaw, J.E., Sicree, R.A., and Zimmet, P.Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030
.Diabetes Res Clin Pract 87, 4-14 .
10.1016/j.diabres.2009.10.007[51] Shi, B., Sepp-Lorenzino, L., Prisco, M., Linsley, P., deAngelis, T., and Baserga, R. (2007). Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells.
J Biol Chem 282, 32582-32590 .
10.1074/jbc.M702806200[52] Stitt-Cavanagh, E., MacLeod, L., and Kennedy, C.R.J. (2009). The podocyte in diabetic kidney disease
. Scientific_World_Journal l9, 1127-1139 .
10.1100/tsw.2009.133[53] Tang, X.Q., Tang, G.L., and ?zcan, S. (2008). Role of microRNAs in diabetes.
Biochim Biophys Acta 1779, 697-701 .
10.1016/j.bbagrm.2008.06.010[54] Teleman, A.A., and Cohen, S.M. (2006). Drosophila lacking microRNA miR-278 are defective in energy homeostasis.
Genes Dev 20, 417-422 .
10.1101/gad.374406[55] Trajkovski, M., Hausser, J., Soutschek, J., Bhat, B., Akin, A., Zavolan, M., Heim, M.H., and Stoffel, M. (2011). MicroRNAs 103 and 107 regulate insulin sensitivity.
Nature 474, 649-653 .
10.1038/nature10112[56] Uchida, T., Myers, M.G., Jr., and White, M.F. (2000). IRS-4 mediates protein kinase B signaling during insulin stimulation without promoting antiapoptosis.
Mol Cell Biol 20, 126-138 .
10.1128/MCB.20.1.126-138.2000[57] Vikman, J., Ma, X.S., Hockerman, G.H., Rorsman, P., and Eliasson, L. (2006). Antibody inhibition of synaptosomal protein of 25 kDa (SNAP-25) and syntaxin 1 reduces rapid exocytosis in insulin-secreting cells.
J Mol Endocrinol 36, 503-515 .
10.1677/jme.1.01978[58] Wang, H.Y., Gauthier, B.R., Hagenfeldt-Johansson, K.A., Iezzi, M., and Wollheim, C.B. (2002). Foxa2 (HNF3β) controls multiple genes implicated in metabolism-secretion coupling of glucose-induced insulin release.
J Biol Chem 277, 17564-17570 .
10.1074/jbc.M111037200[59] Wang, Q., Wang, Y.L., Minto, A.W., Wang, J.H., Shi, Q., Li, X.M., and Quigg, R.J. (2008). MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy.
FASEB J 22, 4126-4135 .
10.1096/fj.08-112326[60] Wang, X.H., Qian, R.Z., Zhang, W., Chen, S.F., Jin, H.M., and Hu, R.M. (2009). MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats.
Clin Exp Pharmacol Physiol 36, 181-188 .
10.1111/j.1440-1681.2008.05057.x[61] White, M.F. (2002). IRS proteins and the common path to diabetes.
Am J Physiol Endocrinol Metab 283, E413-E422 .
[62] Wilcox, G. (2005). Insulin and insulin resistance.
Clin Biochem Rev 26, 19-39 .
[63] Wilfred, B.R., Wang, W.X., and Nelson, P.T. (2007). Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways.
Mol Genet Metab 91, 209-217 .
10.1016/j.ymgme.2007.03.011[64] Wolfrum, C., Besser, D., Luca, E., and Stoffel, M. (2003). Insulin regulates the activity of forkhead transcription factor Hnf-3β/ Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization.
Proc Natl Acad Sci U_S_A 100, 11624-11629 .
10.1073/pnas.1931483100[65] Xu, P.Z, Vernooy, S.Y., Guo, M., and Hay, B.A. (2003). The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism.
Curr Biol ,13, 790-795 .
10.1016/S0960-9822(03)00250-1[66] Yang, B.F., Lin, H.X., Xiao, J.N., Lu, Y.J., Luo, X.B., Li, B.X., Zhang, Y., Xu, C.Q., Bai, Y.L., Wang, H.Z.,
. (2007). The muscle- specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting
GJA1 and
KCNJ2.
Nat Med 13, 486-491 .
10.1038/nm1569[67] Zampetaki, A., Kiechl, S., Drozdov, I., Willeit, P., Mayr, U., Prokopi, M., Mayr, A., Weger, S., Oberhollenzer, F., Bonora, E.,
. (2010). Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes.
Circ Res 107, 810-817 .
10.1161/CIRCRESAHA.110.226357[68] Zhao, E.P., Keller, M.P., Rabaglia, M.E., Oler, A.T., Stapleton, D.S., Schueler, K.L., Neto, E.C., Moon, J.Y., Wang, P., Wang, I.M.,
. (2009). Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice.
Mamm Genome 20, 476-485 .
10.1007/s00335-009-9217-2[69] Zhu, H., Shyh-Chang, N., Segrè, A.V., Shinoda, G., Shah, S.P., Einhorn, W.S., Takeuchi, A., Engreitz, J.M., Hagan, J.P., Kharas, M.G.,
. (2011). The
Lin28/let-7 axis regulates glucose metabolism.
Cell1 47, 81-94 .
10.1016/j.cell.2011.08.033