The growth of B cell receptor microcluster is a universal response of B cells encountering antigens with different motion features

Zhengpeng Wan, Wanli Liu()

PDF(958 KB)
PDF(958 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (7) : 545-558. DOI: 10.1007/s13238-012-2054-1
RESEARCH ARTICLE
RESEARCH ARTICLE

The growth of B cell receptor microcluster is a universal response of B cells encountering antigens with different motion features

  • Zhengpeng Wan, Wanli Liu()
Author information +
History +

Abstract

B lymphocyte cell senses and acquires foreign antigens through clonal distributed B cell receptors (BCRs) expressed on the surface of plasma membrane. The presentation formats of antigens are quite diverse. Based on their Brownian diffusion mobility, there are three forms: free mobile soluble antigens, lateral mobile membrane bound antigens, and fixed immobile antigens. Here, using high resolution high speed live cell imaging approaches, we provide evidence that BCR microclusters are formed on the surface of B cells shortly after B cell’s encountering of antigens with each format of motion features. Through high speed live cell imaging, we determine that these BCR microclusters show dynamic growth feature and by doing so function as the basic platforms for B cells to acquire the antigens. We propose that the formation and dynamic growth of BCR microcluster is a universal mechanism for B cell to response to antigens with diverse motion features.

Keywords

BCR microcluster / TIRFM / live cell imaging / fixed immobile antigen / lateral mobile antigen / free mobile antigen

Cite this article

Download citation ▾
Zhengpeng Wan, Wanli Liu. The growth of B cell receptor microcluster is a universal response of B cells encountering antigens with different motion features. Prot Cell, 2012, 3(7): 545‒558 https://doi.org/10.1007/s13238-012-2054-1

References

[1] Bachmann, M. F., Rohrer, U. H., Kundig, T. M., Burki, K., Hengartner, H., and Zinkernagel, R. M. (1993). The influence of antigen organization on B cell responsiveness. Science 262, 1448-1451 .10.1126/science.8248784
[2] Batista, F. D., and Harwood, N. E. (2009). The who, how and where of antigen presentation to B cells. Nat Rev Immunol 9, 15-27 .10.1038/nri2454
[3] Batista, F.D., Iber, D., and Neuberger, M.S. (2001). B cells acquire antigen from target cells after synapse formation. Nature 411, 489-494 .10.1038/35078099
[4] Blery, M., Tze, L., Miosge, L. A., Jun, J. E., and Goodnow, C. C. (2006). Essential role of membrane cholesterol in accelerated BCR internalization and uncoupling from NF-kappa B in B cell clonal anergy. J Exp Med 203, 1773-1783 .10.1084/jem.20060552
[5] Carrasco, Y. R., and Batista, F. D. (2007). B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27, 160-171 .10.1016/j.immuni.2007.06.007
[6] Depoil, D., Fleire, S., Treanor, B. L., Weber, M., Harwood, N. E., Marchbank, K. L., Tybulewicz, V. L., and Batista, F. D. (2008). CD19 is essential for B cell activation by promoting B cell receptor- antigen microcluster formation in response to membrane- bound ligand. Nat immunol 9 , 63-72 .10.1038/ni1547
[7] Fleire, S. J., Goldman, J. P., Carrasco, Y. R., Weber, M., Bray, D., and Batista, F. D. (2006). B cell ligand discrimination through a spreading and contraction response. Science 312, 738-741 . 10.1126/science.1123940
[8] Gupta, N., and DeFranco, A.L. (2003). Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol Biol Cell 14, 432-444 .10.1091/mbc.02-05-0078
[9] Holtzer, L., Meckel, T., and Schmidt, T. (2007). Nanometric three-dimensional tracking of individual quantum dots in cells. Appl Phys Lett 90, 053902-053904 .10.1063/1.2437066
[10] Junt, T., Moseman, E. A., Iannacone, M., Massberg, S., Lang, P. A., Boes, M., Fink, K., Henrickson, S. E., Shayakhmetov, D. M., Di Paolo, N. C., . (2007). Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110-114 .10.1038/nature06287
[11] Kurosaki, T., Shinohara, H., and Baba, Y. (2010). B cell signaling and fate decision. Annu Rev Immunol 28, 21-55 .10.1146/annurev.immunol.021908.132541
[12] Kusumi, A., Nakada, C., Ritchie, K., Murase, K., Suzuki, K., Murakoshi, H., Kasai, R. S., Kondo, J., and Fujiwara, T. (2005). Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34, 351-378 .10.1146/annurev.biophys.34.040204.144637
[13] Kusumi, A., Shirai, Y. M., Koyama-Honda, I., Suzuki, K. G., and Fujiwara, T. K. (2010). Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy. FEBS Lett 584, 1814-1823 .10.1016/j.febslet.2010.02.047
[14] Lin, K.B.L., Freeman, S.A., Zabetian, S., Brugger, H., Weber, M., Lei, V., Dang-Lawson, M., Tse, K. W. K., Santamaria, R., Batista, F. D., . (2008). The Rap GTPases regulate B cell morphology, immune-synapse formation, and signaling by particulate B cell receptor ligands. Immunity 28, 75-87 .10.1016/j.immuni.2007.11.019
[15] Liu, W., Meckel, T., Tolar, P., Sohn, H. W., and Pierce, S. K. (2010a). Antigen affinity discrimination is an intrinsic function of the B cell receptor. J Exp Med 207, 1095-1111 .10.1084/jem.20092123
[16] Liu, W., Meckel, T., Tolar, P., Sohn, H. W., and Pierce, S. K. (2010b). Intrinsic properties of immunoglobulin IgG1 isotype-switched B cell receptors promote microclustering and the initiation of signaling. Immunity 32, 778-789 .10.1016/j.immuni.2010.06.006
[17] Liu, W., Sohn, H. W., Tolar, P., and Pierce, S. K. (2010c). It's all about change: the antigen-driven initiation of B-cell receptor signaling. Cold Spring Harb Perspect Biol 2, a002295.10.1101/cshperspect.a002295
[18] Liu, W., Won Sohn, H., Tolar, P., Meckel, T., and Pierce, S. K. (2010d). Antigen-induced oligomerization of the B cell receptor is an early target of FcgRIIB inhibition. J Immunol 184, 1977-1989 .10.4049/jimmunol.0902334
[19] Phan, T. G., Grigorova, I., Okada, T., and Cyster, J. G. (2007). Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 8, 992-1000 .10.1038/ni1494
[20] Phee, H., Rodgers, W., and Coggeshall, K. M. (2001). Visualization of negative signaling in B cells by quantitative confocal microscopy. Mol Cell Biol 21, 8615-8625 .10.1128/MCB.21.24.8615-8625.2001
[21] Pierce, S. K., and Liu, W. (2010). The tipping points in the initiation of B cell signalling: how small changes make big differences. Nat Rev Immunol 10, 767-777 .10.1038/nri2853
[22] Puffer, E.B., Pontrello, J. K., Hollenbeck, J. J., Kink, J. A., and Kiessling, L. L. (2007). Activating B cell signaling with defined multivalent ligands. ACS Chem Biol 2, 252-262 .10.1021/cb600489g
[23] Qi, H., Egen, J. G., Huang, A. Y., and Germain, R. N. (2006). Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312, 1672-1676 .10.1126/science.1125703
[24] Reth, M., and Wienands, J. (1997). Initiation and processing of signals from the B cell antigen receptor B. Annu Rev Immunol 15, 453-479 .10.1146/annurev.immunol.15.1.453
[25] Schamel, W. W., and Reth, M. (2000). Monomeric and oligomeric complexes of the B cell antigen receptor. Immunity 13, 5-14 .10.1016/S1074-7613(00)00003-0
[26] Sohn, H. W., Gu, H., and Pierce, S. K. (2003). Cbl-b negatively regulates B cell antigen receptor signaling in mature B cells through ubiquitination of the tyrosine kinase Syk. J Exp Med 197, 1511-1524 .10.1084/jem.20021686
[27] Tolar, P., Hanna, J., Krueger, P. D., and Pierce, S. K. (2009a). The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity 30, 44-55 .10.1016/j.immuni.2008.11.007
[28] Tolar, P., Sohn, H. W., Liu, W., and Pierce, S. K. (2009b). The molecular assembly and organization of signaling active B cell receptor oligomers. Immunol Rev 232, 34-41 .10.1111/j.1600-065X.2009.00833.x
[29] Tolar, P., Sohn, H. W., and Pierce, S. K. (2005). The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat immunol 6, 1168-1176 .10.1038/ni1262
[30] Treanor, B., and Batista, F. D. (2010). Organisation and dynamics of antigen receptors: implications for lymphocyte signalling. Curr Opin Immunol 22, 299-307 .10.1016/j.coi.2010.03.009
[31] Treanor, B., Depoil, D., Gonzalez-Granja, A., Barral, P., Weber, M., Dushek, O., Bruckbauer, A., and Batista, F.D. (2010). The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 32, 187-199 .10.1016/j.immuni.2009.12.005
[32] Weber, M., Treanor, B., Depoil, D., Shinohara, H., Harwood, N. E., Hikida, M., Kurosaki, T., and Batista, F. D. (2008). Phospholipase C-{gamma}2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen. J Exp Med 205, 853-868 .10.1084/jem.20072619
AI Summary AI Mindmap
PDF(958 KB)

Accesses

Citations

Detail

Sections
Recommended

/