Crystal structure and functional implication of the RUN domain of human NESCA

Qifan Sun1,2, Chuanhui Han2,3, Lan Liu1,2, Yizhi Wang1,2, Hongyu Deng3, Lin Bai1(), Tao Jiang1()

PDF(691 KB)
PDF(691 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (8) : 609-617. DOI: 10.1007/s13238-012-2052-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Crystal structure and functional implication of the RUN domain of human NESCA

  • Qifan Sun1,2, Chuanhui Han2,3, Lan Liu1,2, Yizhi Wang1,2, Hongyu Deng3, Lin Bai1(), Tao Jiang1()
Author information +
History +

Abstract

NESCA, a newly discovered signaling adapter protein in the NGF-pathway, contains a RUN domain at its N-terminus. Here we report the crystal structure of the NESCA RUN domain determined at 2.0-? resolution. The overall fold of the NESCA RUN domain comprises nine helices, resembling the RUN domain of RPIPx and the RUN1 domain of Rab6IP1. However, compared to the other RUN domains, the RUN domain of NESCA has significantly different surface electrostatic distributions at the putative GTPase-interacting interface. We demonstrate that the RUN domain of NESCA can bind H-Ras, a downstream signaling molecule of TrkA, with high affinity. Moreover, NESCA RUN can directly interact with TrkA. These results provide new insights into how NESCA participates in the NGF-TrkA signaling pathway.

Keywords

NESCA / RUN domain / crystal structure / TrkA / Ras

Cite this article

Download citation ▾
Qifan Sun, Chuanhui Han, Lan Liu, Yizhi Wang, Hongyu Deng, Lin Bai, Tao Jiang. Crystal structure and functional implication of the RUN domain of human NESCA. Prot Cell, 2012, 3(8): 609‒617 https://doi.org/10.1007/s13238-012-2052-3

References

[1] Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Cryst D Biol Crystallogr 58, 1948-1954 .10.1107/S0907444902016657
[2] Ballif, B.A., and Blenis, J. (2001). Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 12, 397-408 .
[3] Callebaut, I., de Gunzburg, J., Goud, B., and Mornon, J.P. (2001). RUN domains: a new family of domains involved in Ras-like GTPase signaling. Trends Biochem Sci 26, 79-83 .10.1016/S0968-0004(00)01730-8
[4] Campbell, S.L., Khosravi-Far, R., Rossman, K.L., Clark, G.J., and Der, C.J. (1998). Increasing complexity of Ras signaling. Oncogene 17, 1395-1413 .10.1038/sj.onc.1202174
[5] Doublie, S. (2007). Production of selenomethionyl proteins in prokaryotic and eukaryotic expression systems. Methods Mol Biol (Clifton, N.J.) 363, 91-108 .10.1007/978-1-59745-209-0_5
[6] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Cryst D Biol Crystallogr 60, 2126-2132 .10.1107/S0907444904019158
[7] Frade, J.M., and Barde, Y.A. (1998). Nerve growth factor: two receptors, multiple functions. Bioessays 20, 137-145 .10.1002/(SICI)1521-1878(199802)20:2<137::AID-BIES6>3.0.CO;2-Q
[8] Grewal, S.S., York, R.D., and Stork, P.J. (1999). Extracellular-signal-regulated kinase signalling in neurons. Curr Opin Neurobiol9, 544-553 .10.1016/S0959-4388(99)00010-0
[9] Gryz, E.A., and Meakin, S.O. (2000). Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-independent cell survival and neuronal differentiation. Oncogene 19, 417-430 .10.1038/sj.onc.1203330
[10] Huang, E.J., and Reichardt, L.F. (2003). Trk receptors: Roles in neuronal signal transduction. Annu Rev Biochem 72, 609-642 .10.1146/annurev.biochem.72.121801.161629
[11] Jacobson, M.S. (1997). Adolescent nutritional disorders: prevention and treatment (New York, N.Y., New York Academy of Sciences).
[12] Janoueix-Lerosey, I., Pasheva, E., de Tand, M.F., Tavitian, A., and de Gunzburg, J. (1998). Identification of a specific effector of the small GTP-binding protein Rap2. Eur J Biochem 252, 290-298 .10.1046/j.1432-1327.1998.2520290.x
[13] Kaplan, D.R., and Miller, F.D. (2000). Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10, 381-391 .10.1016/S0959-4388(00)00092-1
[14] Kukimoto-Niino, M., Takagi, T., Akasaka, R., Murayama, K., Uchikubo-Kamo, T., Terada, T., Inoue, M., Watanabe, S., Tanaka, A., Hayashizaki, Y., . (2006). Crystal structure of the RUN domain of the RAP2-interacting protein x. J Biol Chem 281, 31843-31853 .10.1074/jbc.M604960200
[15] Levi-Montalcini, R. (1987). The nerve growth factor 35 years later. Science 237, 1154-1162 .10.1126/science.3306916
[16] Macdonald, J.I., Dietrich, A., Gamble, S., Hryciw, T., Grant, R.I., and Meakin, S.O. (2012). Nesca, a novel neuronal adapter protein, links the molecular motor kinesin with the pre-synaptic membrane protein, syntaxin-1, in hippocampal neurons. J Neurochem . (In Press).10.1111/j.1471-4159.2012.07729.x
[17] MacDonald, J.I.S., Kubu, C.J., and Meakin, S.O. (2004). Nesca, a novel adapter, translocates to the nuclear envelope and regulates neurotrophin-induced neurite outgrowth. J Cell Biol 164, 851-862 .10.1083/jcb.200309081
[18] Matsuda, S., Miyazaki, K., Ichigotani, Y., Kurata, H., Takenouchi, Y., Yamamoto, T., Nimura, Y., Irimura, T., Nakatsugawa, S., and Hamaguchi, M. (2000). Molecular cloning and characterization of a novel human gene (NESCA) which encodes a putative adapter protein containing SH3. Biochim Biophys Acta 1491, 321-326 .10.1016/S0167-4781(00)00049-X
[19] Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst D Biol Crystallogr 53, 240-255 .10.1107/S0907444996012255
[20] Napolitano, G., Mirra, S., Monfregola, J., Lavorgna, A., Leonardi, A., and Ursini, M.V. (2009). NESCA: A New NEMO/IKKgamma and TRAF6 Interacting Protein. J Cell Physiol 220, 410-417 .10.1002/jcp.21782
[21] Nimnual, A.S., Yatsula, B.A., and Bar-Sagi, D. (1998). Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 279, 560-563 .10.1126/science.279.5350.560
[22] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276, 307-326 .10.1016/S0076-6879(97)76066-X
[23] Pierce, B.G., Hourai, Y., and Weng, Z. (2011). Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLOS One 6, e24657.10.1371/journal.pone.0024657
[24] Recacha, R., Boulet, A., Jollivet, F., Monier, S., Houdusse, A., Goud, B., and Khan, A.R. (2009). Structural basis for recruitment of Rab6-interacting protein 1 to Golgi via a RUN domain. Structure (London, England: 1993) 17, 21-30 .
[25] Reichardt, L.F. (2006). Neurotrophin-regulated signalling pathways. Phi-los Trans R Soc Lond B Biol Sci 361, 1545-1564 .10.1098/rstb.2006.1894
[26] Rodrigueztebar, A., Dechant, G., and Barde, Y.A. (1990). Binding of brain-derived neurotrophic factor to the nerve growth-factor receptor. Neuron 4, 487-492 .10.1016/0896-6273(90)90107-Q
[27] Shooter, E.M. (2001). Early days of the nerve growth factor proteins. Annu Rev Neurosci 24, 601-629 .10.1146/annurev.neuro.24.1.601
[28] Vanhaesebroeck, B., Leevers, S.J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P.C., Woscholski, R., Parker, P.J., and Waterfield, M.D. (2001). Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70, 535-602 .10.1146/annurev.biochem.70.1.535
[29] Xing, J., Kornhauser, J.M., Xia, Z., Thiele, E.A., and Greenberg, M.E. (1998). Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol Cell Biol 18, 1946-1955 .
[30] Yang, H.B., Kim, O., Wu, J., and Qiu, Y. (2002). Interaction between tyrosine kinase Etk and a RUN domain- and FYVE domain-containing protein RUFY1- A possible role of Etk in regulation of vesicle trafficking. J Biol Chem 277, 30219-30226 .10.1074/jbc.M111933200
[31] Zhu, D.Y., Zhu, Y.Q., Xiang, Y., and Wang, D.C. (2005). Optimizing protein crystal growth through dynamic seeding. Acta Cryst D Biol Crystallogr 61, 772-775 .10.1107/S0907444904028768
AI Summary AI Mindmap
PDF(691 KB)

Accesses

Citations

Detail

Sections
Recommended

/