Cell type specificity of signaling: view from membrane receptors distribution and their downstream transduction networks

Ying He1,2,3, Zhonghao Yu4, Dongya Ge1,3,5, Rui Wang-Sattler4, Hans-Jürgen Thiesen6, Lu Xie2(), Yixue Li1,2()

PDF(941 KB)
PDF(941 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (9) : 701-713. DOI: 10.1007/s13238-012-2049-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Cell type specificity of signaling: view from membrane receptors distribution and their downstream transduction networks

  • Ying He1,2,3, Zhonghao Yu4, Dongya Ge1,3,5, Rui Wang-Sattler4, Hans-Jürgen Thiesen6, Lu Xie2(), Yixue Li1,2()
Author information +
History +

Abstract

Studies on cell signaling pay more attention to spatial dynamics and how such diverse organization can relate to high order of cellular capabilities. To overview the specificity of cell signaling, we integrated human receptome data with proteome spatial expression profiles to systematically investigate the specificity of receptors and receptor-triggered transduction networks across 62 normal cell types and 14 cancer types. Six percent receptors showed cell-type-specific expression, and 4% signaling networks presented enriched cell-specific proteins induced by the receptors. We introduced a concept of "response context" to annotate the cell-type dependent signaling networks. We found that most cells respond similarly to the same stimulus, as the "response contexts" presented high functional similarity. Despite this, the subtle spatial diversity can be observed from the difference in network architectures. The architecture of the signaling networks in nerve cells displayed less completeness than that in glandular cells, which indicated cellular-context dependent signaling patterns are elaborately spatially organized. Likewise, in cancer cells most signaling networks were generally dysfunctional and less complete than that in normal cells. However, glioma emerged hyper-activated transduction mechanism in malignant state. Receptor ATP6AP2 and TNFRSF21 induced rennin-angiotensin and apoptosis signaling were found likely to explain the glioma-specific mechanism. This work represents an effort to decipher context-specific signaling network from spatial dimension. Our results indicated that although a majority of cells engage general signaling response with subtle differences, the spatial dynamics of cell signaling can not only deepen our insights into different signaling mechanisms, but also help understand cell signaling in disease.

Keywords

plasma membrane receptor / cellular signaling transduction network / diversity / cell type specific / spatial expression profile

Cite this article

Download citation ▾
Ying He, Zhonghao Yu, Dongya Ge, Rui Wang-Sattler, Hans-Jürgen Thiesen, Lu Xie, Yixue Li. Cell type specificity of signaling: view from membrane receptors distribution and their downstream transduction networks. Prot Cell, 2012, 3(9): 701‒713 https://doi.org/10.1007/s13238-012-2049-y

References

[1] Ager, E.I., Neo, J., and Christophi, C. (2008). The renin-angiotensin system and malignancy. Carcinogenesis 29, 1675-1684 .10.1093/carcin/bgn171
[2] Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. (1994). General principles of cell signaling. Molecular biology of the cell. New York: Garland Science.
[3] Alexa, A., Rahnenführer, J., and Lengauer, T. (2006). Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600-1607 .10.1093/bioinformatics/btl140
[4] Arrieta, O., Guevara, P., Escobar, E., García-Navarrete, R., Pineda, B., and Sotelo, J. (2005). Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br J Cancer 92, 1247-1252 .10.1038/sj.bjc.6602483
[5] Asai, N., Jijiwa, M., Enomoto, A., Kawai, K., Maeda, K., Ichiahara, M., Murakumo, Y., and Takahashi, M. (2006). RET receptor signaling: Dysfunction in thyroid cancer and Hirschsprung's disease. Pathol Int 56, 164-172 .10.1111/j.1440-1827.2006.01942.x
[6] Bache, K.G., Slagsvold, T., and Stenmark, H. (2004). Defective downregulation of receptor tyrosine kinases in cancer. EMBO J 23, 2707-2712 .10.1038/sj.emboj.7600292
[7] Ben-Shlomo, I., Yu Hsu, S., Rauch, R., Kowalski, H.W., and Hsueh, A.J.W. (2003). Signaling receptome: a genomic and evolutionary perspective of plasma membrane receptors involved in signal transduction. Sci STKE 2003, re9.10.1126/stke.2003.187.re9
[8] Berardini, T.Z., Khodiyar, V.K., Lovering, R.C., and Talmud, P. (2010). The Gene Ontology in 2010: extensions and refinements. Nucleic Acids Res 38, D331-D335 .10.1093/nar/gkp1018
[9] Blume-Jensen, P., and Hunter, T. (2001). Oncogenic kinase signalling. Nature 411, 355-365 .10.1038/35077225
[10] Bouralexis, S., Findlay, D.M., and Evdokiou, A. (2005). Death to the bad guys: targeting cancer via Apo2L/TRAIL. Apoptosis 10, 35-51 .10.1007/s10495-005-6060-0
[11] van Boxel-Dezaire, A.H., Rani, M.R., and Stark, G.R. (2006). Complex modulation of cell type-specific signaling in response to type I interferons. Immunity 25, 361-372 .10.1016/j.immuni.2006.08.014
[12] Brakebusch, C., Grose, R., Quondamatteo, F., Ramirez, A., Jorcano, J.L., Pirro, A., Svensson, M., Herken, R., Sasaki, T., Timpl, R., . (2000). Skin and hair follicle integrity is crucially dependent on [beta]1 integrin expression on keratinocytes. EMBO J 19, 3990-4003 .10.1093/emboj/19.15.3990
[13] Burnier, M. (2001). Angiotensin II type 1 receptor blockers. Circulation 103, 904-912 .10.1161/01.CIR.103.6.904
[14] Cirulli, V., and Yebra, M. (2007). Netrins: beyond the brain. Nat Rev Mol Cell Biol 8, 296-306 .10.1038/nrm2142
[15] Clozel, M., Breu, V., Gray, G.A., Kalina, B., L?ffler, B.M., Burri, K., Cassal, J.M., Hirth, G., Müller, M., and Neidhart, W. (1994). Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J Pharmacol. Exp. Ther 270, 228-235 .
[16] Culotti, J.G., and Merz, D.C. (1998). DCC and netrins. Curr Opin Cell Biol 10, 609-613 .10.1016/S0955-0674(98)80036-7
[17] Cui, J., Mao, X., Olman, V., Hastings, P.J., and Xu, Y. (2012). Hypoxia and miscoupling between reduced energy efficiency and signaling to cell proliferation drive cancer to grow increasingly faster. J Mol Cell Biol 4, 174-176 .10.1093/jmcb/mjs017
[18] Davenport, A.P., D'Orléans-Juste, P., Godfraind, T., Maguire, J.J., Ohlstein, E.H., and Ruffolo, R.R. (2008). Endothelin receptors introductory chapter IUPHAR database.
[19] Dikic, I., and Giordano, S. (2003). Negative receptor signalling. Curr Opin Cell Biol 15, 128-135 .10.1016/S0955-0674(03)00004-8
[20] Dong, S., Allen, J.A., Farrell, M., and Roth, B.L. (2010). A chemical- genetic approach for precise spatio-temporal control of cellular signaling. Mol Biosyst 6, 1376-1380 .10.1039/c002568m
[21] Fennell, D.A., and Rudd, R.M. (2004). Defective core-apoptosis signalling in diffuse malignant pleural mesothelioma: opportunities for effective drug development. Lancet Oncol 5, 354-362 .10.1016/S1470-2045(04)01492-5
[22] De Ferrari, G.V., and Inestrosa, N.C. (2000). Wnt signaling function in Alzheimer's disease. Brain Res. Brain Res Rev 33, 1-12 .10.1016/S0165-0173(00)00021-7
[23] Fischer, O.M., Hart, S., Gschwind, A., and Ullrich, A. (2003). EGFR signal transactivation in cancer cells. Biochem Soc Trans 31, 1203-1208 .10.1042/BST0311203
[24] Furutani, K., Aihara, T., Nakamura, E., Tanaka, S., Ichikawa, A., Ohtsu, H., and Okabe, S. (2003). Crucial role of histamine for regulation of gastric acid secretion ascertained by histidine decarboxylase- knockout mice. J Pharmacol Exp Ther 307, 331-338 .10.1124/jpet.103.052019
[25] H?cker, M., Zhang, Z., Koh, T.J., and Wang, T.C. (1996). The regulation of histidine decarboxylase gene expression. Yale J Biol Med 69, 21-33 .
[26] Houslay, M.D., and Kolch, W. (2000). Cell-type specific integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling. Mol Pharmacol 58, 659 -668 .
[27] Hsueh, R.C., Natarajan, M., Fraser, I., Pond, B., Liu, J., Mumby, S., Han, H., Jiang, L.I., Simon, M.I., Taussig, R., . (2009). Deciphering signaling outcomes from a system of complex networks. Sci Signal 2, ra22.10.1126/scisignal.2000054
[28] Jacox, E., Gotea, V., Ovcharenko, I., and Elnitski, L. (2010). Tissue- specific and ubiquitous expression patterns from alternative promoters of human genes. PLoS ONE 5, e12274.10.1371/journal.pone.0012274
[29] Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., . (2009). STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37, D412-416 .10.1093/nar/gkn760
[30] Jordan, J.D., Landau, E.M., and Iyengar, R. (2000). Signaling networks: the origins review of cellular multitasking. Cell 103, 193-200 .10.1016/S0092-8674(00)00112-4
[31] Kahn, S.E. (2003). The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46, 3-19 .
[32] Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., and Hirakawa, M. (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38, D355-360 .10.1093/nar/gkp896
[33] Kholodenko, B.N. (2006). Cell signalling dynamics in time and space. Nat Rev Mol Cell Biol 7, 165-176 .10.1038/nrm1838
[34] Kiel, C., and Serrano, L. (2009). Cell type-specific importance of ras-c-raf complex association rate constants for MAPK signaling. Sci Signal 2, ra38.10.1126/scisignal.2000397
[35] Larrivée, B., Freitas, C., Trombe, M., Lv, X., Delafarge, B., Yuan, L., Bouvrée, K., Bréant, C., Del Toro, R., Bréchot, N., . (2007). Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. Genes Dev 21, 2433-2447 .10.1101/gad.437807
[36] Lehrer, S. (2010). Glioblastoma and dementia may share a common cause. Med Hypotheses 75, 67-68 .10.1016/j.mehy.2010.01.031
[37] Lin, W., Liu, W., and Hwang, M. (2009). Topological and organizational properties of the products of house-keeping and tissue- specific genes in protein-protein interaction networks. BMC Syst Biol 3, 32.10.1186/1752-0509-3-32
[38] Lu, X., Le Noble, F., Yuan, L., Jiang, Q., De Lafarge, B., Sugiyama, D., Bréant, C., Claes, F., De Smet, F., Thomas, J.-L., . (2004). The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432, 179-186 .10.1038/nature03080
[39] Mattson, M.P. (2000). Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1, 120-130 .10.1038/35040009
[40] Maxwell, J.A., Johnson, S.P., Quinn, J.A., McLendon, R.E., Ali-Osman, F., Friedman, A.H., Herndon, J.E., Bierau, K., Bigley, J., Bigner, D.D., . (2006). Quantitative analysis of O6-alkylguanine-DNA alkyltransferase in malignant glioma. Mol Cancer Ther 5, 2531 -2539 .10.1158/1535-7163.MCT-06-0106
[41] Miller-Jensen, K., Janes, K.A., Brugge, J.S., and Lauffenburger, D.A. (2007). Common effector processing mediates cell-specific responses to stimuli. Nature 448, 604-608 .10.1038/nature06001
[42] Nguyen, G. (2011). Renin, (pro)renin and receptor: an update. Clin Sci 120, 169-178 .10.1042/CS20100432
[43] Overington, J.P., Al-Lazikani, B., and Hopkins, A.L. (2006). How many drug targets are there? Nat Rev Drug Discov 5, 993-996 .10.1038/nrd2199
[44] Ramey, G., Deschemin, J.-C., Durel, B., Canonne-Hergaux, F., Nicolas, G., and Vaulont, S. (2010). Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica 95, 501-504 .10.3324/haematol.2009.014399
[45] Round, J., and Stein, E. (2007). Netrin signaling leading to directed growth cone steering. Curr Opin Neurobiol 17, 15-21 .10.1016/j.conb.2007.01.003
[46] Schug, J., Schuller, W.P., Kappen, C., Salbaum, J.M., Bucan, M., and Stoeckert, C. (2005). Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol 6, R33.10.1186/gb-2005-6-4-r33
[47] Sharman, J.L., Mpamhanga, C.P., Spedding, M., Germain, P., Staels, B., Dacquet, C., Laudet, V., Harmar, A.J., and NC-IUPHAR(2010). IUPHAR-DB: new receptors and tools for easy searching and visualization of pharmacological data. Nucleic Acids Res 39, D534-D538 .10.1093/nar/gkq1062
[48] Sibley, D.R., Benovic, J.L., Caron, M.G., and Lefkowitz, R.J. (1988). Phosphorylation of cell surface receptors: a mechanism for regulating signal transduction pathways. Endocr Rev 9, 38-56 .10.1210/edrv-9-1-38
[49] Silverthorn, D.U., and Ober, W.C. (2007). Human physiology: an integrated approach. San Francisco: Pearson/Benjamin Cummings.
[50] Tanaka, S., Hamada, K., Yamada, N., Sugita, Y., Tonai, S., Hunyady, B., Palkovits, M., Falus, A., Watanabe, T., Okabe, S., . (2002). Gastric acid secretion in L-histidine decarboxylase-deficient mice. Gastroenterology 122, 145-155 .10.1053/gast.2002.30312
[51] Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Forsberg, M., Zwahlen, M., Kampf, C., Wester, K., Hober, S., . (2010). Towards a knowledge-based Human Protein Atlas. Nat Biotech 28, 1248-1250 .10.1038/nbt1210-1248
[52] Vallone, D., Picetti, R., and Borrelli, E. (2000). Structure and function of dopamine receptors . Neurosci Biobehav Rev 24, 125-132 .10.1016/S0149-7634(99)00063-9
[53] Wang, J.Z., Du, Z., Payattakool, R., Yu, P.S., and Chen, C.-F. (2007). A new method to measure the semantic similarity of GO terms. Bioinformatics 23, 1274 -1281 .10.1093/bioinformatics/btm087
[54] Wilkes, M.C., Repellin, C.E., Hong, M., Bracamonte, M., Penheiter, S.G., Borg, J.-P., and Leof, E.B. (2009). Erbin and the NF2 tumor suppressor merlin cooperatively regulate cell-type-specific activation of PAK2 by TGF-β. Dev Cell 16, 433-444 .10.1016/j.devcel.2009.01.009
[55] Won, J.K., Yang, H.W., Shin, S.Y., Lee, J.H., Heo, W.D., and Cho, K.H. (2012). The crossregulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor. J Mol Cell Biol 4, 153-163 .10.1093/jmcb/mjs021
[56] Yu, G., Li, F., Qin, Y., Bo, X., Wu, Y., and Wang, S. (2010). GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 26, 976-978 .10.1093/bioinformatics/btq064
[57] Zahnow, C.A., Yi, H.F., McBride, O.W., and Joseph, D.R. (1991). Cloning of the cDNA encoding human histidine decarboxylase from an erythroleukemia cell line and mapping of the gene locus to chromosome 15. DNA Seq 1, 395-400 .
[58] Zhang, X.P., Kamata, T., Yokoyama, K., Puzon-McLaughlin, W., and Takada, Y. (1998). Specific interaction of the recombinant disintegrin- like domain of MDC-15 (Metargidin, ADAM-15) with Integrin αvβ3. J Biol Chem 273, 7345 -7350 .10.1074/jbc.273.13.7345
AI Summary AI Mindmap
PDF(941 KB)

Accesses

Citations

Detail

Sections
Recommended

/