The tumor immunosuppressive microenvironment impairs the therapy of anti-HER2/neu antibody

Meng Xu1,2, Xuexiang Du1,2, Mingyue Liu1,2, Sirui Li1,2, Xiaozhu Li1, Yang-Xin Fu1,3(), Shengdian Wang1()

PDF(682 KB)
PDF(682 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (6) : 441-449. DOI: 10.1007/s13238-012-2044-3
COMMUNICATION
COMMUNICATION

The tumor immunosuppressive microenvironment impairs the therapy of anti-HER2/neu antibody

  • Meng Xu1,2, Xuexiang Du1,2, Mingyue Liu1,2, Sirui Li1,2, Xiaozhu Li1, Yang-Xin Fu1,3(), Shengdian Wang1()
Author information +
History +

Abstract

It has been well established that immune surveillance plays critical roles in preventing the occurrence and progression of tumor. More and more evidence in recent years showed the host anti-tumor immune responses also play important roles in the chemotherapy and radiotherapy of cancers. Our previous study found that tumor- targeting therapy of anti-HER2/neu mAb is mediated by CD8+ T cell responses. However, we found here that enhancement of CD8+ T cell responses by combination therapy with IL-15R/IL-15 fusion protein or anti-CD40, which are strong stimultors for T cell responses, failed to promote the tumor therapeutic effects of anti-HER2/neu mAb. Analysis of tumor microenviornment showed that tumor tissues were heavily infiltrated with the immunosuppressive macrophages and most tumor infiltrating T cells, especially CD8+ T cells, expressed high level of inhibitory co-signaling receptor PD-1. These data suggest that tumor microenvironment is dominated by the immunosuppressive strategies, which thwart anti-tumor immune responses. Therefore, the successful tumor therapy should be the removal of inhibitory signals in the tumor microenvironment in combination with other therapeutic strategies.

Keywords

anti-HER2/neu antibody / CD8+ T cells / tumor microenvironment / tumor therapy / immune suppression

Cite this article

Download citation ▾
Meng Xu, Xuexiang Du, Mingyue Liu, Sirui Li, Xiaozhu Li, Yang-Xin Fu, Shengdian Wang. The tumor immunosuppressive microenvironment impairs the therapy of anti-HER2/neu antibody. Prot Cell, 2012, 3(6): 441‒449 https://doi.org/10.1007/s13238-012-2044-3

References

[1] Apetoh, L., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Criollo, A., Mignot, G., Maiuri, M.C., Ullrich, E., Saulnier, P., . (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13, 1050-1059 .10.1038/nm1622
[2] Beatty, G.L., Chiorean, E.G., Fishman, M.P., Saboury, B., Teitelbaum, U.R., Sun, W., Huhn, R.D., Song, W., Li, D., Sharp, L.L., . (2011). CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612-1616 .10.1126/science.1198443
[3] Donkor, M.K., Sarkar, A., Savage, P.A., Franklin, R.A., Johnson, L.K., Jungbluth, A.A., Allison, J.P., and Li, M.O. (2011). T cell surveillance of oncogene-induced prostate cancer is impeded by T cell-derived TGF-beta1 cytokine. Immunity 35, 123-134 .10.1016/j.immuni.2011.04.019
[4] Dubois, S., Patel, H.J., Zhang, M., Waldmann, T.A., and Muller, J.R. (2008). Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J Immunol 180, 2099-2106 .
[5] Epardaud, M., Elpek, K.G., Rubinstein, M.P., Yonekura, A.R., Bellemare-Pelletier, A., Bronson, R., Hamerman, J.A., Goldrath, A.W., and Turley, S.J. (2008). Interleukin-15/interleukin-15R alpha complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells. Cancer Res 68, 2972-2983 .10.1158/0008-5472.CAN-08-0045
[6] Ferris, R.L., Jaffee, E.M., and Ferrone, S. (2010). Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J Clin Oncol 28, 4390-4399 .10.1200/JCO.2009.27.6360
[7] Gabrilovich, D.I., Ostrand-Rosenberg, S., and Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12, 253-268 .10.1038/nri3175
[8] Han, K.P., Zhu, X., Liu, B., Jeng, E., Kong, L., Yovandich, J.L., Vyas, V.V., Marcus, W.D., Chavaillaz, P.A., Romero, C.A., . (2011). IL-15∶IL-15 receptor alpha superagonist complex: high-level co-expression in recombinant mammalian cells, purification and characterization. Cytokine 56, 804-810 .10.1016/j.cyto.2011.09.028
[9] Keir, M.E., Butte, M.J., Freeman, G.J., and Sharpe, A.H. (2008). PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26, 677-704 .10.1146/annurev.immunol.26.021607.090331
[10] Kim, Y.S., Kim, Y.J., Lee, J.M., Kim, E.K., Park, Y.J., Choe, S.K., Ko, H.J., and Kang, C.Y. (2012). Functional Changes in Myeloid-Derived Suppressor Cells (MDSCs) during Tumor Growth: FKBP51 Contributes to the Regulation of the Immunosuppressive Function of MDSCs. J Immunol 188, 4226-4234 .10.4049/jimmunol.1103040
[11] Lee, Y., Auh, S.L., Wang, Y., Burnette, B., Meng, Y., Beckett, M., Sharma, R., Chin, R., Tu, T., Weichselbaum, R.R., . (2009). Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114, 589-595 .10.1182/blood-2009-02-206870
[12] Lipson, E.J., and Drake, C.G. (2011). Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res 17, 6958-6962 .10.1158/1078-0432.CCR-11-1595
[13] Ma, G., Pan, P.Y., Eisenstein, S., Divino, C.M., Lowell, C.A., Takai, T., and Chen, S.H. (2011). Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity 34, 385-395 .10.1016/j.immuni.2011.02.004
[14] Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related inflammation. Nature 454, 436-444 .10.1038/nature07205
[15] Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P., and Bronte, V. (2008). Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222, 162-179 .10.1111/j.1600-065X.2008.00602.x
[16] Mortier, E., Quemener, A., Vusio, P., Lorenzen, I., Boublik, Y., Grotzinger, J., Plet, A., and Jacques, Y. (2006). Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem 281, 1612-1619 .10.1074/jbc.M508624200
[17] Park, S., Jiang, Z., Mortenson, E.D., Deng, L., Radkevich-Brown, O., Yang, X., Sattar, H., Wang, Y., Brown, N.K., Greene, M., . (2010). The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18, 160-170 .10.1016/j.ccr.2010.06.014
[18] Qian, B.Z., and Pollard, J.W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39-51 .10.1016/j.cell.2010.03.014
[19] Sakuishi, K., Apetoh, L., Sullivan, J.M., Blazar, B.R., Kuchroo, V.K., and Anderson, A.C. (2010). Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207, 2187-2194 .10.1084/jem.20100643
[20] Schreiber, R.D., Old, L.J., and Smyth, M.J. (2011). Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565-1570 .10.1126/science.1203486
[21] Sistigu, A., Viaud, S., Chaput, N., Bracci, L., Proietti, E., and Zitvogel, L. (2011). Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol 33, 369-383 .10.1007/s00281-011-0245-0
[22] Tartour, E., Pere, H., Maillere, B., Terme, M., Merillon, N., Taieb, J., Sandoval, F., Quintin-Colonna, F., Lacerda, K., Karadimou, A., . (2011). Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 30, 83-95 .10.1007/s10555-011-9281-4
[23] Willimsky, G., Czeh, M., Loddenkemper, C., Gellermann, J., Schmidt, K., Wust, P., Stein, H., and Blankenstein, T. (2008). Immunogenicity of premalignant lesions is the primary cause of general cytotoxic T lymphocyte unresponsiveness. J Exp Med 205, 1687-1700 .10.1084/jem.20072016
[24] Yu, P., Lee, Y., Liu, W., Krausz, T., Chong, A., Schreiber, H., and Fu, Y.X. (2005). Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 201, 779-791 .10.1084/jem.20041684
[25] Zhou, Q., Munger, M.E., Veenstra, R.G., Weigel, B.J., Hirashima, M., Munn, D.H., Murphy, W.J., Azuma, M., Anderson, A.C., Kuchroo, V.K., . (2011). Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117, 4501-4510 .10.1182/blood-2010-10-310425
[26] Zitvogel, L., Kepp, O., and Kroemer, G. (2011). Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 8, 151-160 .10.1038/nrclinonc.2010.223
AI Summary AI Mindmap
PDF(682 KB)

Accesses

Citations

Detail

Sections
Recommended

/