Calculating pH-dependent free energy of proteins by using Monte Carlo protonation probabilities of ionizable residues

Qiang Huang1(), Andreas Herrmann2

PDF(590 KB)
PDF(590 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (3) : 230-238. DOI: 10.1007/s13238-012-2035-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Calculating pH-dependent free energy of proteins by using Monte Carlo protonation probabilities of ionizable residues

  • Qiang Huang1(), Andreas Herrmann2
Author information +
History +

Abstract

Protein folding, stability, and function are usually influenced by pH. And free energy plays a fundamental role in analysis of such pH-dependent properties. Electrostatics-based theoretical framework using dielectric solvent continuum model and solving Poisson-Boltzmann equation numerically has been shown to be very successful in understanding the pH-dependent properties. However, in this approach the exact computation of pH-dependent free energy becomes impractical for proteins possessing more than several tens of ionizable sites (e.g.>30), because exact evaluation of the partition function requires a summation over a vast number of possible protonation microstates. Here we present a method which computes the free energy using the average energy and the protonation probabilities of ionizable sites obtained by the well-established Monte Carlo sampling procedure. The key feature is to calculate the entropy by using the protonation probabilities. We used this method to examine a well-studied protein (lysozyme) and produced results which agree very well with the exact calculations. Applications to the optimum pH of maximal stability of proteins and protein–DNA interactions have also resulted in good agreement with experimental data. These examples recommend our method for application to the elucidation of the pH-dependent properties of proteins.

Keywords

protein protonation / protein electrostatics / pH-dependent free energy / Poisson-Boltzmann equation / Monte Carlo simulation

Cite this article

Download citation ▾
Qiang Huang, Andreas Herrmann. Calculating pH-dependent free energy of proteins by using Monte Carlo protonation probabilities of ionizable residues. Prot Cell, 2012, 3(3): 230‒238 https://doi.org/10.1007/s13238-012-2035-4

References

[1] Alexov, E. (2004). Numerical calculations of the pH of maximal protein stability. The effect of the sequence composition and three-dimensional structure. Eur J Biochem 271, 173-185 .10.1046/j.1432-1033.2003.03917.x
[2] Alexov, E.G., and Gunner, M.R. (1999). Calculated protein and proton motions coupled to electron transfer: electron transfer from QA-to QB in bacterial photosynthetic reaction centers. Biochemistry 38, 8253-8270 .10.1021/bi982700a
[3] Antosiewicz, J., McCammon, J.A., and Gilson, M.K. (1994). Prediction of pH-dependent properties of proteins. J Mol Biol 238, 415-436 .10.1006/jmbi.1994.1301
[4] Bashford, D. (1997). An object-oriented programming suite for electrostatic effects in biological molecules. In: Scientific computing in object-oriented parallel environments . Y. Ishikawa, R.R. Oldehoeft, J.V.W. Reynders, and M. Tholburn, eds. Berlin: Springer. 233-240 .10.1007/3-540-63827-X_66
[5] Bashford, D. (2004). Macroscopic electrostatic models for protonation states in proteins. Front Biosci 9, 1082-1099 .10.2741/1187
[6] Bashford, D., and Gerwert, K. (1992). Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J Mol Biol 224, 473-486 .10.1016/0022-2836(92)91009-E
[7] Bashford, D., and Karplus, M. (1990). pKa’s of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29, 10219-10225 .10.1021/bi00496a010
[8] Bashford, D., and Karplus, M. (1991). Multi-site titration curves of proteins: An analysis of exact and approximate methods for their calculation. J Chem Phys 95, 9556-9561 .10.1021/j100176a093
[9] Beamer, L.J., and Pabo, C.O. (1992). Refined 1.8 A crystal structure of the lambda repressor-operator complex. J Mol Biol 227, 177-196 .10.1016/0022-2836(92)90690-L
[10] Beroza, P., Fredkin, D.R., Okamura, M.Y., and Feher, G. (1991). Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci U S A 88, 5804-5808 .10.1073/pnas.88.13.5804
[11] Da Silva, F.L.B., J?nsson, B., and Penfold, R. (2001). A critical investigation of the Tanford-Kirkwood scheme by means of Monte Carlo simulations. Protein Sci 10, 1415-1425 .10.1110/ps.42601
[12] Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G. (1995). A smooth particle mesh Ewald method. J Chem Phys 103, 8577-8593 .10.1063/1.470117
[13] Frick, D.N., Rypma, R.S., Lam, A.M.I., and Frenz, C.M. (2004). Electrostatic analysis of the hepatitis C virus NS3 helicase reveals both active and allosteric site locations. Nucleic Acids Res 32, 5519-5528 .10.1093/nar/gkh891
[14] Gordon, J.C., Myers, J.B., Folta, T., Shoja, V., Heath, L.S., and Onufriev, A. (2005). H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33, W368-371 .10.1093/nar/gki464
[15] Huang, Q., Opitz, R., Knapp, E.W., and Herrmann, A. (2002). Protonation and stability of the globular domain of influenza virus hemagglutinin. Biophys J 82, 1050-1058 .10.1016/S0006-3495(02)75464-7
[16] Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. (1983). Comparison of simple potential functions for simulating liquid water. J Chem Phys 79, 926-935 .10.1063/1.445869
[17] Kale, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, A., Varadarajan, K., and Schulten, K. (1999). NAMD2: Greater scalability for parallel molecular dynamics. J Comput Phys 151, 283-312 .10.1006/jcph.1999.6201
[18] Kannt, A., Lancaster, C.R.D., and Michel, H. (1998). The coupling of electron transfer and proton translocation: electrostatic calculations on Paracoccus denitrificans cytochrome c oxidase. Biophys J 74, 708-721 .10.1016/S0006-3495(98)73996-7
[19] Kantardjiev, A.A., and Atanasov, B.P. (2006). PHEPS: web-based pH-dependent protein electrostatics server. Nucleic Acids Res 34, W43-47 .10.1093/nar/gkl165
[20] Langella, E., Improta, R., Crescenzi, O., and Barone, V. (2006). Assessing the acid-base and conformational properties of histidine residues in human prion protein (125-228) by means of pKa calculations and molecular dynamics simulations. Proteins: Struct Funct Bioinfo 64, 167-177 .10.1002/prot.20979
[21] MacKerell, A.D.J., Bashford, D., Bellot, M., Dunbrack, R.L.J., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., . (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem 102, 3586-3616 .10.1021/jp973084f
[22] Meirovitch, H. (2007). Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation. Curr Opin Struct Biol 17, 181-186 .10.1016/j.sbi.2007.03.016
[23] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E. (1953). Equation of state calculations by fast computing machines. J Chem Phys 21, 1087-1092 .10.1063/1.1699114
[24] Misra, V.K., Hecht, J.L., Yang, A.-S., and Honig, B. (1998). Electrostatic contributions to the binding free energy of the lambdacI repressor to DNA. Biophys J 75, 2262-2273 .10.1016/S0006-3495(98)77671-4
[25] Musil, D., Zucic, D., Turk, D., Engh, R.A., Mayr, I., Huber, R., Popovic, T., Turk, V., Towatari, T., Katunuma, N., . (1991). The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J 10, 2321-2330 .
[26] Olson, M.A. (2001). Calculations of free-energy contributions to protein-RNA complex stabilization. Biophys J 81, 1841-1853 .10.1016/S0006-3495(01)75836-5
[27] Rabenstein, B., and Knapp, E.W. (2001). Calculated pH-dependent population of CO-myoglobin conformers. Biophys J 80, 1141-1150 .10.1016/S0006-3495(01)76091-2
[28] Rodinger, T., and Pomès, R. (2005). Enhancing the accuracy, the efficiency and the scope of free energy simulations. Curr Opin Struct Biol 15, 164-170 .10.1016/j.sbi.2005.03.001
[29] Ryckaert, J.P., Ciccitti, G., and Berendsen, H.J.C. (1977). Numerical integration of the cartesian equations of motion of a system with constrains: molecular dynamics of n-alkanes. J Chem Phys 23, 327-341 .
[30] Seiffert, G.B., Ullmann, G.M., Messerschmidt, A., Schink, B., Kroneck, P.M.H., and Einsle, O. (2007). Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. Proc Natl Acad Sci U S A 104, 3073-3077 .10.1073/pnas.0610407104
[31] Senear, D.F., and Ackers, G.K. (1990). Proton-linked contributions to site-specific interactions of lambda cI repressor and OR. Biochemistry 29, 6568-6577 .10.1021/bi00480a004
[32] Senear, D.F., and Batey, R. (1991). Comparison of operator-specific and nonspecific DNA binding of the lambda cI repressor: [KCl] and pH effects. Biochemistry 30, 6677-6688 .10.1021/bi00241a007
[33] Tanford, C. (1970). Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem 24, 1-95 .10.1016/S0065-3233(08)60241-7
[34] Tynan-Connolly, B.M., and Nielsen, J.E. (2006). pKD: re-designing protein pKa values. Nucleic Acids Res 34, W48-51 .10.1093/nar/gkl192
[35] Tynan-Connolly, B.M., and Nielsen, J.E. (2007). Redesigning protein pKa values. Protein Sci 16, 239-249 .10.1110/ps.062538707
[36] Ullmann, G.M., and Knapp, E.W. (1999). Electrostatic models for computing protonation and redox equilibria in proteins. Eur Biophys J 28, 533-551 .10.1007/s002490050236
[37] Yang, A.-S., and Honig, B. (1993). On the pH dependence of protein stability. J Mol Biol 231, 459-474 .10.1006/jmbi.1993.1294
AI Summary AI Mindmap
PDF(590 KB)

Accesses

Citations

Detail

Sections
Recommended

/