Sensing bacterial infections by NAIP receptors in NLRC4 inflammasome activation

Yi-Nan Gong1, Feng Shao2()

PDF(289 KB)
PDF(289 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (2) : 98-105. DOI: 10.1007/s13238-012-2028-3
REVIEW
REVIEW

Sensing bacterial infections by NAIP receptors in NLRC4 inflammasome activation

  • Yi-Nan Gong1, Feng Shao2()
Author information +
History +

Abstract

The inflammasome is an emerging new pathway in innate immune defense against microbial infection or endogenous danger signals. The inflammasome stimulates activation of inflammatory caspases, mainly caspase-1. Caspase-1 activation is responsible for processing and secretion of IL-1β and IL-18 as well as for inducing macrophage pyroptotic death. Assembly of the large cytoplasmic inflammasome complex is thought to be mediated by members of NOD-like receptor (NLR) family. While functions of most of the NLR proteins remain to be defined, several NLR proteins including NLRC4 have been shown to assemble distinct inflammasome complexes. These inflammasome pathways, particularly the NLRC4 inflammasome, play a critical role in sensing and restricting diverse types of bacterial infections. Here we review recent advances in defining the exact bacterial ligands and the ligand-binding receptors involved in NLRC4 inflammasome activation. Implications of the discovery of the NAIP family of inflammasome receptors for bacterial flagellin and type III secretion apparatus on future inflammasome and bacterial infection studies are also discussed.

Keywords

inflammasome / NOD-like receptors / NLRC4 / caspase-1 / NAIP / type III secretion system / flagellin / Salmonella / Legionella / enteropathogenic E. coli / Burkholderia

Cite this article

Download citation ▾
Yi-Nan Gong, Feng Shao. Sensing bacterial infections by NAIP receptors in NLRC4 inflammasome activation. Prot Cell, 2012, 3(2): 98‒105 https://doi.org/10.1007/s13238-012-2028-3

References

[1] Amer, A., Franchi, L., Kanneganti, T.D., Body-Malapel, M., Oz?ren, N., Brady, G., Meshinchi, S., Jagirdar, R., Gewirtz, A., Akira, S., . (2006). Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281, 35217-35223 .10.1074/jbc.M604933200
[2] Anand, P.K., Malireddi, R.K., and Kanneganti, T.D. (2011). Role of the nlrp3 inflammasome in microbial infection. Front Microbiol 2,.
[3] Boyden, E.D., and Dietrich, W.F. (2006). Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38, 240-244 .10.1038/ng1724
[4] Brodsky, I.E., and Medzhitov, R. (2011). Pyroptosis: macrophage suicide exposes hidden invaders. Curr Biol 21, R72-R75 .10.1016/j.cub.2010.12.008
[5] Broz, P., Newton, K., Lamkanfi, M., Mariathasan, S., Dixit, V.M., and Monack, D.M. (2010a). Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med 207, 1745-1755 .10.1084/jem.20100257
[6] Broz, P., von Moltke, J., Jones, J.W., Vance, R.E., and Monack, D.M. (2010b). Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8, 471-483 .10.1016/j.chom.2010.11.007
[7] Case, C.L., Shin, S., and Roy, C.R. (2009). Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infect Immun 77, 1981-1991 .10.1128/IAI.01382-08
[8] Chen, G., Shaw, M.H., Kim, Y.G., and Nu?ez, G. (2009). NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 4, 365-398 .10.1146/annurev.pathol.4.110807.092239
[9] Chen, G.Y., Liu, M., Wang, F., Bertin, J., and Nú?ez, G. (2011). A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol 186, 7187-7194 .10.4049/jimmunol.1100412
[10] Chen, L.M., Kaniga, K., and Galán, J.E. (1996). Salmonella spp. Are cytotoxic for cultured macrophages. Mol Microbiol 21, 1101-1115 .10.1046/j.1365-2958.1996.471410.x
[11] Cornelis, G.R. (2010). The type III secretion injectisome, a complex nanomachine for intracellular ‘toxin’ delivery. Biol Chem 391, 745-751 .10.1515/bc.2010.079
[12] Cui, J., and Shao, F. (2011). Biochemistry and cell signaling taught by bacterial effectors. Trends Biochem Sci 36, 532-540 .10.1016/j.tibs.2011.07.003
[13] Davis, B.K., Wen, H., and Ting, J.P. (2011). The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29, 707-735 .10.1146/annurev-immunol-031210-101405
[14] Deane, J.E., Roversi, P., Cordes, F.S., Johnson, S., Kenjale, R., Daniell, S., Booy, F., Picking, W.D., Picking, W.L., Blocker, A.J., . (2006). Molecular model of a type III secretion system needle: Implications for host-cell sensing. Proc Natl Acad Sci U S A 103, 12529-12533 .10.1073/pnas.0602689103
[15] Derré, I., and Isberg, R.R. (2004). Macrophages from mice with the restrictive Lgn1 allele exhibit multifactorial resistance to Legionella pneumophila. Infect Immun 72, 6221-6229 .10.1128/IAI.72.11.6221-6229.2004
[16] Diez, E., Lee, S.H., Gauthier, S., Yaraghi, Z., Tremblay, M., Vidal, S., and Gros, P. (2003). Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33, 55-60 .10.1038/ng1065
[17] Duncan, J.A., Bergstralh, D.T., Wang, Y., Willingham, S.B., Ye, Z.,Zimmermann, A.G., and ing, J.P. (2007). Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A 104, 8041-8046 .10.1073/pnas.0611496104
[18] Elinav, E., Strowig, T., Kau, A.L., Henao-Mejia, J., Thaiss, C.A., Booth, C.J., Peaper, D.R., Bertin, J., Eisenbarth, S.C., Gordon, J.I., . (2011). NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745-757 .10.1016/j.cell.2011.04.022
[19] Erhardt, M., Namba, K., and Hughes, K.T. (2010). Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb Perspect Biol 2, a000299.10.1101/cshperspect.a000299
[20] Faustin, B., Lartigue, L., Bruey, J.M., Luciano, F., Sergienko, E., Bailly-Maitre, B., Volkmann, N., Hanein, D., Rouiller, I., and Reed, J.C. (2007). Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25, 713-724 .10.1016/j.molcel.2007.01.032
[21] Fink, S.L., and Cookson, B.T. (2006). Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8, 1812-1825 .10.1111/j.1462-5822.2006.00751.x
[22] Fortier, A., de Chastellier, C., Balor, S., and Gros, P. (2007). Birc1e/Naip5 rapidly antagonizes modulation of phagosome maturation by Legionella pneumophila. Cell Microbiol 9, 910-923 .10.1111/j.1462-5822.2006.00839.x
[23] Fortier, A., Doiron, K., Saleh, M., Grinstein, S., and Gros, P. (2009). Restriction of Legionella pneumophila replication in macrophages requires concerted action of the transcriptional regulators Irf1 and Irf8 and nod-like receptors Naip5 and Nlrc4. Infect Immun 77, 4794-4805 .10.1128/IAI.01546-08
[24] Franchi, L., Amer, A., Body-Malapel, M., Kanneganti, T.D., Oz?ren, N., Jagirdar, R., Inohara, N., Vandenabeele, P., Bertin, J., Coyle, A., . (2006). Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7, 576-582 .10.1038/ni1346
[25] Franchi, L., Stoolman, J., Kanneganti, T.D., Verma, A., Ramphal, R., and Nú?ez, G. (2007). Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37, 3030-3039 .10.1002/eji.200737532
[26] Galán, J.E., and Wolf-Watz, H. (2006). Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567-573 .10.1038/nature05272
[27] Galle, M., Schotte, P., Haegman, M., Wullaert, A., Yang, H.J., Jin, S., and Beyaert, R. (2008). The Pseudomonas aeruginosa Type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1beta maturation. J Cell Mol Med 12, 1767-1776 .10.1111/j.1582-4934.2007.00190.x
[28] Ge, J. and Shao, F. (2011). Manipulation of host vesicular trafficking and innate immune defense by Legionella Dot/Icm effectors. Cell Microbiol 13, 1870-1880 .10.1111/j.1462-5822.2011.01710.x
[29] Hersh, D., Monack, D.M., Smith, M.R., Ghori, N., Falkow, S., and Zychlinsky, A. (1999). The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci U S A 96, 2396-2401 .10.1073/pnas.96.5.2396
[30] Hornung, V., and Latz, E. (2010). Intracellular DNA recognition. Nat Rev Immunol 10, 123-130 .10.1038/nri2690
[31] Isberg, R.R., O’Connor, T.J., and Heidtman, M. (2009). The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7, 13-24 .10.1038/nrmicro1967
[32] Kofoed, E.M., and Vance, R.E. (2011). Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477, 592-595 .10.1038/nature10394
[33] Lamkanfi, M., Amer, A., Kanneganti, T.D., Mu?oz-Planillo, R., Chen, G., Vandenabeele, P., Fortier, A., Gros, P., and Nú?ez, G. (2007). The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J Immunol 178, 8022-8027 .
[34] Lightfield, K.L., Persson, J., Brubaker, S.W., Witte, C.E., von Moltke, J., Dunipace, E.A., Henry, T., Sun, Y.H., Cado, D., Dietrich, W.F., . (2008). Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9, 1171-1178 .10.1038/ni.1646
[35] Mariathasan, S., Newton, K., Monack, D.M., Vucic, D., French, D.M., Lee, W.P., Roose-Girma, M., Erickson, S., and Dixit, V.M. (2004). Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213-218 .10.1038/nature02664
[36] Marlovits, T.C., Kubori, T., Lara-Tejero, M., Thomas, D., Unger, V.M., and Galán, J.E. (2006). Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441, 637-640 .10.1038/nature04822
[37] Master, S.S., Rampini, S.K., Davis, A.S., Keller, C., Ehlers, S., Springer, B., Timmins, G.S., Sander, P., and Deretic, V. (2008). Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3, 224-232 .10.1016/j.chom.2008.03.003
[38] Miao, E.A., Alpuche-Aranda, C.M., Dors, M., Clark, A.E., Bader, M.W., Miller, S.I., and Aderem, A. (2006). Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7, 569-575 .10.1038/ni1344
[39] Miao, E.A., Ernst, R.K., Dors, M., Mao, D.P., and Aderem, A. (2008). Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Natl Acad Sci U S A 105, 2562-2567 .10.1073/pnas.0712183105
[40] Miao, E.A., Leaf, I.A., Treuting, P.M., Mao, D.P., Dors, M., Sarkar, A., Warren, S.E., Wewers, M.D., and Aderem, A. (2010a). Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11, 1136-1142 .10.1038/ni.1960
[41] Miao, E.A., Mao, D.P., Yudkovsky, N., Bonneau, R., Lorang, C.G., Warren, S.E., Leaf, I.A., and Aderem, A. (2010b). Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A 107, 3076-3080 .10.1073/pnas.0913087107
[42] Miao, E.A., and Warren, S.E. (2010). Innate immune detection of bacterial virulence factors via the NLRC4 inflammasome. J Clin Immunol 30, 502-506 .10.1007/s10875-010-9386-5
[43] Molofsky, A.B., Byrne, B.G., Whitfield, N.N., Madigan, C.A., Fuse, E.T., Tateda, K., and Swanson, M.S. (2006). Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203, 1093-1104 .10.1084/jem.20051659
[44] Ren, T., Zamboni, D.S., Roy, C.R., Dietrich, W.F., and Vance, R.E. (2006). Flagellin-deficient Legionella mutants evade caspase-1-and Naip5-mediated macrophage immunity. PLoS Pathog 2, e18.10.1371/journal.ppat.0020018
[45] Schroder, K., and Tschopp, J. (2010). The inflammasomes. Cell 140, 821-832 .10.1016/j.cell.2010.01.040
[46] Subramanian, N., and Qadri, A. (2006). Lysophospholipid sensingtriggers secretion of flagellin from pathogenic salmonella. Nat Immunol 7, 583-589 .10.1038/ni1336
[47] Sun, Y.H., Rolán, H.G., and Tsolis, R.M. (2007). Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. J Biol Chem 282, 33897-33901 .10.1074/jbc.C700181200
[48] Sutterwala, F.S., Mijares, L.A., Li, L., Ogura, Y., Kazmierczak, B.I., and Flavell, R.A. (2007). Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204, 3235-3245 .10.1084/jem.20071239
[49] Takeuchi, O., and Akira, S. (2010). Pattern recognition receptors and inflammation. Cell 140, 805-820 .10.1016/j.cell.2010.01.022
[50] Ting, J.P., Kastner, D.L., and Hoffman, H.M. (2006). CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol 6, 183-195 .10.1038/nri1788
[51] Tsuchiya, K., Hara, H., Kawamura, I., Nomura, T., Yamamoto, T., Daim, S., Dewamitta, S.R., Shen, Y., Fang, R., and Mitsuyama, M. (2010). Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes. J Immunol 185, 1186-1195 .10.4049/jimmunol.1001058
[52] Warren, S.E., Mao, D.P., Rodriguez, A.E., Miao, E.A., and Aderem, A. (2008). Multiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection. J Immunol 180, 7558-7564 .
[53] Wright, E.K., Goodart, S.A., Growney, J.D., Hadinoto, V., Endrizzi, M.G., Long, E.M., Sadigh, K., Abney, A.L., Bernstein-Hanley, I., and Dietrich, W.F. (2003). Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr Biol 13, 27-36 .10.1016/S0960-9822(02)01359-3
[54] Wu, J., Fernandes-Alnemri, T., and Alnemri, E.S. (2010). Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J Clin Immunol 30, 693-702 .10.1007/s10875-010-9425-2
[55] Zamboni, D.S., Kobayashi, K.S., Kohlsdorf, T., Ogura, Y., Long, E.M., Vance, R.E., Kuida, K., Mariathasan, S., Dixit, V.M., Flavell, R.A., . (2006). The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7, 318-325 .10.1038/ni1305
[56] Zhao, Y., Yang, J., Shi, J., Gong, Y.N., Lu, Q., Xu, H., Liu, L., and Shao, F. (2011). The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596-600 .10.1038/nature10510
AI Summary AI Mindmap
PDF(289 KB)

Accesses

Citations

Detail

Sections
Recommended

/