Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis

Yuan Yuan1, Peng Li2, Jing Ye1()

PDF(361 KB)
PDF(361 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (3) : 173-181. DOI: 10.1007/s13238-012-2025-6
REVIEW
REVIEW

Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis

  • Yuan Yuan1, Peng Li2, Jing Ye1()
Author information +
History +

Abstract

Atherosclerosis is a chronic, inflammatory disorder characterized by the deposition of excess lipids in the arterial intima. The formation of macrophage-derived foam cells in a plaque is a hallmark of the development of atherosclerosis. Lipid homeostasis, especially cholesterol homeostasis, plays a crucial role during the formation of foam cells. Recently, lipid droplet-associated proteins, including PAT and CIDE family proteins, have been shown to control the development of atherosclerosis by regulating the formation, growth, stabilization and functions of lipid droplets in macrophage-derived foam cells. This review focuses on the potential mechanisms of formation of macrophage-derived foam cells in atherosclerosis with particular emphasis on the role of lipid homeostasis and lipid droplet-associated proteins. Understanding the process of foam cell formation will aid in the future discovery of novel therapeutic interventions for atherosclerosis.

Keywords

macrophage / foam cell / atherosclerosis / cholesterol / lipid droplet-associated proteins

Cite this article

Download citation ▾
Yuan Yuan, Peng Li, Jing Ye. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Prot Cell, 2012, 3(3): 173‒181 https://doi.org/10.1007/s13238-012-2025-6

References

[1] Adorni, M.P., Zimetti, F., Billheimer, J.T., Wang, N., Rader, D.J., Phillips, M.C., and Rothblat, G.H. (2007). The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 48, 2453-2462 .10.1194/jlr.M700274-JLR200
[2] An, G., Wang, H., Tang, R., Yago, T., McDaniel, J.M., McGee, S., Huo, Y., and Xia, L. (2008). P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation 117, 3227-3237 .10.1161/CIRCULATIONAHA.108.771048
[3] Ashraf, M.Z., and Gupta, N. (2011). Scavenger receptors: Implications in atherothrombotic disorders. Int J Biochem Cell Biol 43, 697-700 .10.1016/j.biocel.2011.01.019
[4] Borradaile, N.M., Han, X., Harp, J.D., Gale, S.E., Ory, D.S., and Schaffer, J.E. (2006). Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 47, 2726-2737 .10.1194/jlr.M600299-JLR200
[5] Brown, M.S., and Goldstein, J.L. (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331-340 .10.1016/S0092-8674(00)80213-5
[6] Brown, M.S., and Goldstein, J.L. (1999). A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 96, 11041-11048 .10.1073/pnas.96.20.11041
[7] Brunham, L.R., Singaraja, R.R., Duong, M., Timmins, J.M., Fievet, C., Bissada, N., Kang, M.H., Samra, A., Fruchart, J.C., McManus, B., . (2009). Tissue-specific roles of ABCA1 influence susceptibility to atherosclerosis. Arterioscler Thromb Vasc Biol 29, 548-554 .10.1161/ATVBAHA.108.182303
[8] Buechler, C., Ritter, M., Duong, C.Q., Orso, E., Kapinsky, M., and Schmitz, G. (2001). Adipophilin is a sensitive marker for lipid loading in human blood monocytes. Biochim Biophys Acta 1532, 97-104 .
[9] Buers, I., Hofnagel, O., Ruebel, A., Severs, N.J., and Robenek, H. (2011). Lipid droplet associated proteins: an emerging role in atherogenesis. Histol Histopathol 26, 631-642 .
[10] Buers, I., Robenek, H., Lorkowski, S., Nitschke, Y., Severs, N.J., and Hofnagel, O. (2009). TIP47, a lipid cargo protein involved in macrophage triglyceride metabolism. Arterioscler Thromb Vasc Biol 29, 767-773 .10.1161/ATVBAHA.108.182675
[11] Bultel, S., Helin, L., Clavey, V., Chinetti-Gbaguidi, G., Rigamonti, E., Colin, M., Fruchart, J.C., Staels, B., and Lestavel, S. (2008). Liver X receptor activation induces the uptake of cholesteryl esters from high density lipoproteins in primary human macrophages. Arterioscler Thromb Vasc Biol 28, 2288-2295 .10.1161/ATVBAHA.108.175042
[12] Burgess, B., Naus, K., Chan, J., Hirsch-Reinshagen, V., Tansley, G., Matzke, L., Chan, B., Wilkinson, A., Fan, J., Donkin, J., . (2008). Overexpression of human ABCG1 does not affect atherosclerosis in fat-fed ApoE-deficient mice. Arterioscler Thromb Vasc Biol 28, 1731-1737 .10.1161/ATVBAHA.108.168542
[13] Chawla, A., Boisvert, W.A., Lee, C.H., Laffitte, B.A., Barak, Y., Joseph, S.B., Liao, D., Nagy, L., Edwards, P.A., Curtiss, L.K., . (2001). A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7, 161-171 .10.1016/S1097-2765(01)00164-2
[14] Chen, F.L., Yang, Z.H., Wang, X.C., Liu, Y., Yang, Y.H., Li, L.X., Liang, W.C., Zhou, W.B., and Hu, R.M. (2010). Adipophilin affects the expression of TNF-alpha, MCP-1, and IL-6 in THP-1 macrophages. Mol Cell Biochem 337, 193-199 .10.1007/s11010-009-0299-7
[15] Chinetti, G., Lestavel, S., Bocher, V., Remaley, A.T., Neve, B., Torra, I.P., Teissier, E., Minnich, A., Jaye, M., Duverger, N., . (2001). PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7, 53-58 .10.1038/83348
[16] Chinetti-Gbaguidi, G., Rigamonti, E., Helin, L., Mutka, A.L., Lepore, M., Fruchart, J.C., Clavey, V., Ikonen, E., Lestavel, S., and Staels, B. (2005). Peroxisome proliferator-activated receptor alpha controls cellular cholesterol trafficking in macrophages. J Lipid Res 46, 2717-2725 .10.1194/jlr.M500326-JLR200
[17] Combadière, C., Potteaux, S., Rodero, M., Simon, T., Pezard, A., Esposito, B., Merval, R., Proudfoot, A., Tedgui, A., and Mallat, Z. (2008). Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117, 1649-1657 .10.1161/CIRCULATIONAHA.107.745091
[18] Duewell, P., Kono, H., Rayner, K.J., Sirois, C.M., Vladimer, G., Bauernfeind, F.G., Abela, G.S., Franchi, L., Nu?ez, G., Schnurr, M., . (2010). NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357-1361 .10.1038/nature08938
[19] Faber, B.C., Cleutjens, K.B., Niessen, R.L., Aarts, P.L., Boon, W., Greenberg, A.S., Kitslaar, P.J., Tordoir, J.H., and Daemen, M.J. (2001). Identification of genes potentially involved in rupture of human atherosclerotic plaques. Circ Res 89, 547-554 .10.1161/hh1801.096340
[20] Fazio, S., Major, A.S., Swift, L.L., Gleaves, L.A., Accad, M., Linton, M.F., and Farese, R.V. Jr. (2001). Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest 107, 163-171 .10.1172/JCI10310
[21] Feingold, K.R., Kazemi, M.R., Magra, A.L., McDonald, C.M., Chui, L.G., Shigenaga, J.K., Patzek, S.M., Chan, Z.W., Londos, C., and Grunfeld, C. (2010). ADRP/ADFP and Mal1 expression are increased in macrophages treated with TLR agonists. Atherosclerosis 209, 81-88 .10.1016/j.atherosclerosis.2009.08.042
[22] Ghosh, S., St Clair, R.W., and Rudel, L.L. (2003). Mobilization of cytoplasmic CE droplets by overexpression of human macrophage cholesteryl ester hydrolase. J Lipid Res 44, 1833-1840 .10.1194/jlr.M300162-JLR200
[23] Ghosh, S., Zhao, B., Bie, J., and Song, J. (2010). Macrophage cholesteryl ester mobilization and atherosclerosis. Vascul Pharmacol 52, 1-10 .10.1016/j.vph.2009.10.002
[24] Glass, C.K., and Witztum, J.L. (2001). Atherosclerosis. the road ahead. Cell 104, 503-516 .10.1016/S0092-8674(01)00238-0
[25] Goldstein, J.L., DeBose-Boyd, R.A., and Brown, M.S. (2006). Protein sensors for membrane sterols. Cell 124, 35-46 .10.1016/j.cell.2005.12.022
[26] Gong, J., Sun, Z., and Li, P. (2009). CIDE proteins and metabolic disorders. Curr Opin Lipidol 20, 121-126 .10.1097/MOL.0b013e328328d0bb
[27] Gordon, S., and Martinez, F.O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity 32, 593-604 .10.1016/j.immuni.2010.05.007
[28] Gu, J.Q., Wang, D.F., Yan, X.G., Zhong, W.L., Zhang, J., Fan, B., and Ikuyama, S. (2010). A Toll-like receptor 9-mediated pathway stimulates perilipin 3 (TIP47) expression and induces lipid accumulation in macrophages. Am J Physiol Endocrinol Metab 299, E593-E600 .10.1152/ajpendo.00159.2010
[29] Hofnagel, O., Buers, I., Schnoor, M., Lorkowski, S., and Robenek, H. (2007). Expression of perilipin isoforms in cell types involved in atherogenesis. Atherosclerosis 190, 14-15 , author reply 16-17.10.1016/j.atherosclerosis.2006.06.010
[30] Im, S.S., Yousef, L., Blaschitz, C., Liu, J.Z., Edwards, R.A., Young, S.G., Raffatellu, M., and Osborne, T.F. (2011). Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab 13, 540-549 .10.1016/j.cmet.2011.04.001
[31] Kadl, A., Meher, A.K., Sharma, P.R., Lee, M.Y., Doran, A.C., Johnstone, S.R., Elliott, M.R., Gruber, F., Han, J., Chen, W., . (2010). Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107, 737-746 .10.1161/CIRCRESAHA.109.215715
[32] Kunjathoor, V.V., Febbraio, M., Podrez, E.A., Moore, K.J., Andersson, L., Koehn, S., Rhee, J.S., Silverstein, R., Hoff, H.F., and Freeman, M.W. (2002). Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277, 49982-49988 .10.1074/jbc.M209649200
[33] Langlois, D., Forcheron, F., Li, J.Y., del Carmine, P., Neggazi, S., and Beylot, M. (2011). Increased atherosclerosis in mice deficient in perilipin1. Lipids Health Dis 10, 169.10.1186/1476-511X-10-169
[34] Larigauderie, G., Cuaz-Pérolin, C., Younes, A.B., Furman, C., Lasselin, C., Copin, C., Jaye, M., Fruchart, J.C., and Rouis, M. (2006). Adipophilin increases triglyceride storage in human macrophages by stimulation of biosynthesis and inhibition of beta-oxidation. FEBS J 273, 3498-3510 .10.1111/j.1742-4658.2006.05357.x
[35] Larigauderie, G., Furman, C., Jaye, M., Lasselin, C., Copin, C., Fruchart, J.C., Castro, G., and Rouis, M. (2004). Adipophilin enhances lipid accumulation and prevents lipid efflux from THP-1 macrophages: potential role in atherogenesis. Arterioscler Thromb Vasc Biol 24, 504-510 .10.1161/01.ATV.0000115638.27381.97
[36] Lee, C.H., Chawla, A., Urbiztondo, N., Liao, D., Boisvert, W.A., Evans, R.M., and Curtiss, L.K. (2003). Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science 302, 453-457 .10.1126/science.1087344
[37] Lee, K.J., Kim, H.A., Kim, P.H., Lee, H.S., Ma, K.R., Park, J.H., Kim, D.J., and Hahn, J.H. (2004). Ox-LDL suppresses PMA-induced MMP-9 expression and activity through CD36-mediated activation of PPAR-g. Exp Mol Med 36, 534-544 .
[38] Li, A.C., Binder, C.J., Gutierrez, A., Brown, K.K., Plotkin, C.R., Pattison, J.W., Valledor, A.F., Davis, R.A., Willson, T.M., Witztum, J.L., . (2004). Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest 114, 1564-1576 .
[39] Li, H., Song, Y., Li, F., Zhang, L., Gu, Y., Zhang, L., Jiang, L., Dong, W., Ye, J., and Li, Q. (2010). Identification of lipid droplet-associated proteins in the formation of macrophage-derived foam cells using microarrays. Int J Mol Med 26, 231-239 .10.3892/ijmm_00000457
[40] Li, J.Z., and Li, P. (2007). Cide proteins and the development of obesity. Novartis Found Symp 286, 155-159 ; discussion 159-163, 196-203.
[41] Li, J.Z., Ye, J., Xue, B., Qi, J., Zhang, J., Zhou, Z., Li, Q., Wen, Z., and Li, P. (2007). Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes 56, 2523-2532 .10.2337/db07-0040
[42] Listenberger, L.L., Ostermeyer-Fay, A.G., Goldberg, E.B., Brown, W.J., and Brown, D.A. (2007). Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J Lipid Res 48, 2751-2761 .10.1194/jlr.M700359-JLR200
[43] Makowski, L., Boord, J.B., Maeda, K., Babaev, V.R., Uysal, K.T., Morgan, M.A., Parker, R.A., Suttles, J., Fazio, S., Hotamisligil, G.S., . (2001). Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 7, 699-705 .10.1038/89076
[44] Manning-Tobin, J.J., Moore, K.J., Seimon, T.A., Bell, S.A., Sharuk, M., Alvarez-Leite, J.I., de Winther, M.P., Tabas, I., and Freeman, M.W. (2009). Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol 29, 19-26 .10.1161/ATVBAHA.108.176644
[45] Martinez, F.O., Gordon, S., Locati, M., and Mantovani, A. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177, 7303-7311 .
[46] Moon, Y.A., Shah, N.A., Mohapatra, S., Warrington, J.A., and Horton, J.D. (2001). Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem 276, 45358-45366 .10.1074/jbc.M108413200
[47] Moore, K.J., Kunjathoor, V.V., Koehn, S.L., Manning, J.J., Tseng, A.A., Silver, J.M., McKee, M., and Freeman, M.W. (2005). Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest 115, 2192-2201 .10.1172/JCI24061
[48] Nishino, N., Tamori, Y., Tateya, S., Kawaguchi, T., Shibakusa, T., Mizunoya, W., Inoue, K., Kitazawa, R., Kitazawa, S., Matsuki, Y., . (2008). FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118, 2808-2821 .
[49] Ouimet, M., Franklin, V., Mak, E., Liao, X., Tabas, I., and Marcel, Y.L. (2011). Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13, 655-667 .10.1016/j.cmet.2011.03.023
[50] Paul, A., Chan, L., and Bickel, P.E. (2008a). The PAT family of lipid droplet proteins in heart and vascular cells. Curr Hypertens Rep 10, 461-466 .10.1007/s11906-008-0086-y
[51] Paul, A., Chang, B.H., Li, L., Yechoor, V.K., and Chan, L. (2008b). Deficiency of adipose differentiation-related protein impairs foam cell formation and protects against atherosclerosis. Circ Res 102, 1492-1501 .10.1161/CIRCRESAHA.107.168070
[52] Pello, O.M., Silvestre, C., De Pizzol, M., and Andrés, V. (2011). A glimpse on the phenomenon of macrophage polarization during atherosclerosis. Immunobiology 216, 1172-1176 .10.1016/j.imbio.2011.05.010
[53] Perrey, S., Legendre, C., Matsuura, A., Guffroy, C., Binet, J., Ohbayashi, S., Tanaka, T., Ortuno, J.C., Matsukura, T., Laugel, T., . (2001). Preferential pharmacological inhibition of macrophage ACAT increases plaque formation in mouse and rabbit models of atherogenesis. Atherosclerosis 155, 359-370 .10.1016/S0021-9150(00)00599-2
[54] Podrez, E.A., Febbraio, M., Sheibani, N., Schmitt, D., Silverstein, R.L., Hajjar, D.P., Cohen, P.A., Frazier, W.A., Hoff, H.F., and Hazen, S.L. (2000). Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest 105, 1095-1108 .10.1172/JCI8574
[55] Posokhova, E.N., Khoshchenko, O.M., Chasovskikh, M.I., Pivovarova, E.N., and Dushkin, M.I. (2008). Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors alpha and gamma and of retinoid X receptors. Biochemistry (Mosc) 73, 296-304 .10.1134/S0006297908030097
[56] Puri, V., Konda, S., Ranjit, S., Aouadi, M., Chawla, A., Chouinard, M., Chakladar, A., and Czech, M.P. (2007). Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J Biol Chem 282, 34213-34218 .10.1074/jbc.M707404200
[57] Puri, V., Ranjit, S., Konda, S., Nicoloro, S.M., Straubhaar, J., Chawla, A., Chouinard, M., Lin, C., Burkart, A., Corvera, S., . (2008). Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A 105, 7833-7838 .10.1073/pnas.0802063105
[58] Rader, D.J., and Puré, E. (2005). Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab 1, 223-230 .10.1016/j.cmet.2005.03.005
[59] Rios, F.J., Gidlund, M., and Jancar, S. (2011). Pivotal role for platelet-activating factor receptor in CD36 expression and oxLDL uptake by human monocytes/macrophages. Cell Physiol Biochem 27, 363-372 .10.1159/000327962
[60] Robenek, H., Lorkowski, S., Schnoor, M., and Troyer, D. (2005a). Spatial integration of TIP47 and adipophilin in macrophage lipid bodies. J Biol Chem 280, 5789-5794 .10.1074/jbc.M407194200
[61] Robenek, H., Robenek, M.J., and Troyer, D. (2005b). PAT family proteins pervade lipid droplet cores. J Lipid Res 46, 1331-1338 .10.1194/jlr.M400323-JLR200
[62] Siegel-Axel, D., Daub, K., Seizer, P., Lindemann, S., and Gawaz, M. (2008). Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis. Cardiovasc Res 78, 8-17 .10.1093/cvr/cvn015
[63] Takahashi, K., Takeya, M., and Sakashita, N. (2002). Multifunctional roles of macrophages in the development and progression of atherosclerosis in humans and experimental animals. Med Electron Microsc 35, 179-203 .10.1007/s007950200023
[64] Taketa, K., Matsumura, T., Yano, M., Ishii, N., Senokuchi, T., Motoshima, H., Murata, Y., Kim-Mitsuyama, S., Kawada, T., Itabe, H., . (2008). Oxidized low density lipoprotein activates peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma through MAPK-dependent COX-2 expression in macrophages. J Biol Chem 283, 9852-9862 .10.1074/jbc.M703318200
[65] Tansey, J.T., Sztalryd, C., Gruia-Gray, J., Roush, D.L., Zee, J.V., Gavrilova, O., Reitman, M.L., Deng, C.X., Li, C., Kimmel, A.R., . (2001). Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci U S A 98, 6494-6499 .10.1073/pnas.101042998
[66] Tobias, P., and Curtiss, L.K. (2005). Thematic review series: The immune system and atherogenesis. Paying the price for pathogen protection: toll receptors in atherogenesis. J Lipid Res 46, 404-411 .10.1194/jlr.R400015-JLR200
[67] Toh, S.Y., Gong, J., Du, G., Li, J.Z., Yang, S., Ye, J., Yao, H., Zhang, Y., Xue, B., Li, Q., . (2008). Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS One 3, e2890.10.1371/journal.pone.0002890
[68] Tordjman, K., Bernal-Mizrachi, C., Zemany, L., Weng, S., Feng, C., Zhang, F., Leone, T.C., Coleman, T., Kelly, D.P., and Semenkovich, C.F. (2001). PPARalpha deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest 107, 1025-1034 .10.1172/JCI11497
[69] Trigatti, B., Rayburn, H., Vi?als, M., Braun, A., Miettinen, H., Penman, M., Hertz, M., Schrenzel, M., Amigo, L., Rigotti, A., . (1999). Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A 96, 9322-9327 .10.1073/pnas.96.16.9322
[70] Ye, J., Li, J.Z., Liu, Y., Li, X., Yang, T., Ma, X., Li, Q., Yao, Z., and Li, P. (2009). Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab 9, 177-190 .10.1016/j.cmet.2008.12.013
[71] Yvan-Charvet, L., Ranalletta, M., Wang, N., Han, S., Terasaka, N., Li, R., Welch, C., and Tall, A.R. (2007). Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 117, 3900-3908 .
[72] Zhao, B., Song, J., Chow, W.N., St Clair, R.W., Rudel, L.L., and Ghosh, S. (2007). Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr mice. J Clin Invest 117, 2983-2992 .10.1172/JCI30485
[73] Zhao, Y., Pennings, M., Vrins, C.L., Calpe-Berdiel, L., Hoekstra, M., Kruijt, J.K., Ottenhoff, R., Hildebrand, R.B., van der Sluis, R., Jessup, W., . (2011). Hypocholesterolemia, foam cell accumulation, but no atherosclerosis in mice lacking ABC-transporter A1 and scavenger receptor BI. Atherosclerosis 218, 314-322 .10.1016/j.atherosclerosis.2011.07.096
[74] Zhou, X., He, W., Huang, Z., Gotto, A.M.Jr, Hajjar, D.P., and Han, J. (2008). Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism. J Biol Chem 283, 2129-2138 .10.1074/jbc.M706636200
AI Summary AI Mindmap
PDF(361 KB)

Accesses

Citations

Detail

Sections
Recommended

/