Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells

Shaopeng Chen1,2, Junkang Qiu1, Chuan Chen1, Chunchun Liu1,3, Yuheng Liu1, Lili An1, Junying Jia3, Jie Tang1, Lijun Wu2(), Haiying Hang1()

PDF(723 KB)
PDF(723 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (6) : 460-469. DOI: 10.1007/s13238-012-2024-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells

  • Shaopeng Chen1,2, Junkang Qiu1, Chuan Chen1, Chunchun Liu1,3, Yuheng Liu1, Lili An1, Junying Jia3, Jie Tang1, Lijun Wu2(), Haiying Hang1()
Author information +
History +

Abstract

Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-αscFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient.

Keywords

antibody / activation-induced cytidine deaminase (AID) / somatic hypermutation / affinity maturation / TNF-alpha

Cite this article

Download citation ▾
Shaopeng Chen, Junkang Qiu, Chuan Chen, Chunchun Liu, Yuheng Liu, Lili An, Junying Jia, Jie Tang, Lijun Wu, Haiying Hang. Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells. Prot Cell, 2012, 3(6): 460‒469 https://doi.org/10.1007/s13238-012-2024-7

References

[1] Arakawa, H., Kudo, H., Batrak, V., Caldwell, R.B., Rieger, M.A., Ellwart, J.W., and Buerstedde, J.M. (2008). Protein evolution by hypermutation and selection in the B cell line DT40. Nucleic Acids Res 36, e1.10.1093/nar/gkm616
[2] Chao, G., Lau, W.L., Hackel, B.J., Sazinsky, S.L., Lippow, S.M., and Wittrup, K.D. (2006). Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1, 755-768 .10.1038/nprot.2006.94
[3] Cumbers, S.J., Williams, G.T., Davies, S.L., Grenfell, R.L., Takeda, S., Batista, F.D., Sale, J.E., and Neuberger, M.S. (2002). Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nat Biotechnol 20, 1129-1134 .10.1038/nbt752
[4] Delgado, M.D., Chernukhin, I.V., Bigas, A., Klenova, E.M., and León, J. (1999). Differential expression and phosphorylation of CTCF, a c-myc transcriptional regulator, during differentiation of human myeloid cells. FEBS Lett 444, 5-10 .10.1016/S0014-5793(99)00013-7
[5] Di Noia, J.M., and Neuberger, M.S. (2007). Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76, 1-22 .10.1146/annurev.biochem.76.061705.090740
[6] Gossen, M., and Bujard, H. (1992). Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89, 5547-5551 .10.1073/pnas.89.12.5547
[7] Gronwald, R.G., Grant, F.J., Haldeman, B.A., Hart, C.E., O’Hara, P.J., Hagen, F.S., Ross, R., Bowen-Pope, D.F., and Murray, M.J. (1988). Cloning and expression of a cDNA coding for the human platelet-derived growth factor receptor: evidence for more than one receptor class. Proc Natl Acad Sci U S A 85, 3435-3439 .10.1073/pnas.85.10.3435
[8] He, W., Zhao, Y., Zhang, C., An, L., Hu, Z., Liu, Y., Han, L., Bi, L., Xie, Z., Xue, P., . (2008). Rad9 plays an important role in DNA mismatch repair through physical interaction with MLH1. Nucleic Acids Res 36, 6406-6417 .10.1093/nar/gkn686
[9] Hogan, M.M., and Vogel, S.N. (2001). Measurement of tumor necrosis factor alpha and beta. Curr Protoc Immunol Chapter 6, Unit 6 10.
[10] Ito, S., Nagaoka, H., Shinkura, R., Begum, N., Muramatsu, M., Nakata, M., and Honjo, T. (2004). Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc Natl Acad Sci U S A 101, 1975-1980 .10.1073/pnas.0307335101
[11] Jee, B.K., Park, K.M., Surendran, S., Lee, W.K., Han, C.W., Kim, Y.S., and Lim, Y. (2006). KAI1/CD82 suppresses tumor invasion by MMP9 inactivation via TIMP1 up-regulation in the H1299 human lung carcinoma cell line. Biochem Biophys Res Commun 342, 655-661 .10.1016/j.bbrc.2006.01.153
[12] Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., and Honjo, T. (2000). Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553-563 .10.1016/S0092-8674(00)00078-7
[13] Muramatsu, M., Sankaranand, V.S., Anant, S., Sugai, M., Kinoshita, K., Davidson, N.O., and Honjo, T. (1999). Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 274, 18470-18476 .10.1074/jbc.274.26.18470
[14] Qiu, J., and Hang, H. (2010). Mimicry of nature—Protein directed evolution based on DNA hypermutation. ACTA BIOP HYS ICA S INICA 26, 855-860 .
[15] Seo, H., Hashimoto, S., Tsuchiya, K., Lin, W., Shibata, T., and Ohta, K. (2006). An ex vivo method for rapid generation of monoclonal antibodies (ADLib system). Nat Protoc 1, 1502-1506 .10.1038/nprot.2006.248
[16] Seo, H., Masuoka, M., Murofushi, H., Takeda, S., Shibata, T., and Ohta, K. (2005). Rapid generation of specific antibodies by enhanced homologous recombination. Nat Biotechnol 23, 731-735 .10.1038/nbt1092
[17] Shivarov, V., Shinkura, R., and Honjo, T. (2008). Dissociation of in vitro DNA deamination activity and physiological functions of AID mutants. Proc Natl Acad Sci U S A 105, 15866-15871 .10.1073/pnas.0806641105
[18] Sohail, A., Klapacz, J., Samaranayake, M., Ullah, A., and Bhagwat, A.S. (2003). Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res 31, 2990-2994 .10.1093/nar/gkg464
[19] Suriano, R., Ghosh, S.K., Ashok, B.T., Mittelman, A., Chen, Y., Banerjee, A., and Tiwari, R.K. (2005). Differences in glycosylation patterns of heat shock protein, gp96: implications for prostate cancer prevention. Cancer Res 65, 6466-6475 .10.1158/0008-5472.CAN-04-4639
[20] Todo, K., Miyake, K., Magari, M., Kanayama, N., and Ohmori, H. (2006). Novel in vitro screening system for monoclonal antibodies using hypermutating chicken B cell library. J Biosci Bioeng 102, 478-481 .10.1263/jbb.102.478
[21] Van Antwerp, J.J., and Wittrup, K.D. (2000). Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16, 31-37 .10.1021/bp990133s
[22] Wang, C.L., Harper, R.A., and Wabl, M. (2004a). Genome-wide somatic hypermutation. Proc Natl Acad Sci U S A 101, 7352-7356 .10.1073/pnas.0402009101
[23] Wang, L., Jackson, W.C., Steinbach, P.A., and Tsien, R.Y. (2004b). Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A 101, 16745-16749 .10.1073/pnas.0407752101
[24] Wang, L., and Tsien, R.Y. (2006). Evolving proteins in mammalian cells using somatic hypermutation. Nat Protoc 1, 1346-1350 .10.1038/nprot.2006.243
[25] Wang, M., Yang, Z., Rada, C., and Neuberger, M.S. (2009). AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol 16, 769-776 .10.1038/nsmb.1623
[26] Windhorst, S., Blechner, C., Lin, H.Y., Elling, C., Nalaskowski, M., Kirchberger, T., Guse, A.H., and Mayr, G.W. (2008). Ins(1,4,5)P3 3-kinase-A overexpression induces cytoskeletal reorganization via a kinase-independent mechanism. Biochem J 414, 407-417 .10.1042/BJ20080630
[27] Wu, X., Geraldes, P., Platt, J.L., and Cascalho, M. (2005). The double-edged sword of activation-induced cytidine deaminase. J Immunol 174, 934-941 .
[28] Yoshikawa, K., Okazaki, I.M., Eto, T., Kinoshita, K., Muramatsu, M., Nagaoka, H., and Honjo, T. (2002). AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296, 2033-2036 .10.1126/science.1071556
AI Summary AI Mindmap
PDF(723 KB)

Accesses

Citations

Detail

Sections
Recommended

/