BioNetSim: a Petri net-based modeling tool for simulations of biochemical processes

Junhui Gao1, Li Li2, Xiaolin Wu3, Dong-Qing Wei2()

PDF(352 KB)
PDF(352 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (3) : 225-229. DOI: 10.1007/s13238-012-2019-4
RESEARCH ARTICLE
RESEARCH ARTICLE

BioNetSim: a Petri net-based modeling tool for simulations of biochemical processes

  • Junhui Gao1, Li Li2, Xiaolin Wu3, Dong-Qing Wei2()
Author information +
History +

Abstract

BioNetSim, a Petri net-based software for modeling and simulating biochemistry processes, is developed, whose design and implement are presented in this paper, including logic construction, real-time access to KEGG (Kyoto Encyclopedia of Genes and Genomes), and BioModel database. Furthermore, glycolysis is simulated as an example of its application. BioNetSim is a helpful tool for researchers to download data, model biological network, and simulate complicated biochemistry processes. Gene regulatory networks, metabolic pathways, signaling pathways, and kinetics of cell interaction are all available in BioNetSim, which makes modeling more efficient and effective. Similar to other Petri net-based softwares, BioNetSim does well in graphic application and mathematic construction. Moreover, it shows several powerful predominances. (1) It creates models in database. (2) It realizes the real-time access to KEGG and BioModel and transfers data to Petri net. (3) It provides qualitative analysis, such as computation of constants. (4) It generates graphs for tracing the concentration of every molecule during the simulation processes.

Keywords

biochemical processes / simulation software / Petri net / Gillespie

Cite this article

Download citation ▾
Junhui Gao, Li Li, Xiaolin Wu, Dong-Qing Wei. BioNetSim: a Petri net-based modeling tool for simulations of biochemical processes. Prot Cell, 2012, 3(3): 225‒229 https://doi.org/10.1007/s13238-012-2019-4

References

[1] Aderem, A. (2005). Systems biology: its practice and challenges. Cell 121, 511-513 .10.1016/j.cell.2005.04.020
[2] Angeli, D., De Leenheer, P., and Sontag, E.D. (2007). A Petri net approach to the study of persistence in chemical reaction networks. Math Biosci 210, 598-618 .10.1016/j.mbs.2007.07.003
[3] Chaouiya, C. (2007). Petri net modelling of biological networks. Brief Bioinform 8, 210-219 .10.1093/bib/bbm029
[4] Egri-Nagy, A., and Nehaniv, C.L. (2008). Algebraic properties of automata associated to Petri nets and applications to computation in biological systems. Biosystems 94, 135-144 .10.1016/j.biosystems.2008.05.019
[5] Fanni, A., and Giua, A. (1998). Discrete event representation of qualitative models using Petri nets. IEEE Trans Syst Man Cybern B Cybern 28, 770-780 .10.1109/3477.735387
[6] Fell, D.A. (1992). Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286, 313-330 .
[7] Goryanin, I., Hodgman, T.C., and Selkov, E. (1999). Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15, 749-758 .10.1093/bioinformatics/15.9.749
[8] Jeng, M.D. (1997). A Petri net synthesis theory for modeling flexible manufacturing systems. IEEE Trans Syst Man Cybern B Cybern 27, 169-183 .10.1109/3477.558787
[9] Kanehisa, M., Goto, S., Kawashima, S., and Nakaya, A. (2002). The KEGG databases at GenomeNet. Nucleic Acids Res 30, 42-46 .10.1093/nar/30.1.42
[10] Kiesling, R. (2003). Networking, ODBC, & Perl- ODBC functions for local hosts and peer-to-peer networks. Dr Dobbs J 28, 18.
[11] Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L., He, E., Henry, A., Stefan, M.I., . (2010). BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4, 92.10.1186/1752-0509-4-92
[12] Murata, T. (1989). Petri Nets- Properties, analysis and applications. P Ieee 77, 541-580 .10.1109/5.24143
[13] Odd Bringslida, G.R., Agustin De La Villac (2007). dMath: a European project for the restatement of mathematics teaching. Euro J Eng Educ 32, 9-20 .
[14] Orth, J.D., Thiele, I., and Palsson, B.O. (2010). What is flux balance analysis? Nat Biotechnol 28, 245-248 .10.1038/nbt.1614
[15] Orton, R.J., Sturm, O.E., Vyshemirsky, V., Calder, M., Gilbert, D.R., and Kolch, W. (2005). Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J 392, 249-261 .10.1042/BJ20050908
[16] Pinney, J.W., Westhead, D.R., and McConkey, G.A. (2003). Petri Net representations in systems biology. Biochem Soc Trans 31, 1513-1515 .10.1042/BST0311513
[17] Reddy, V.N., Liebman, M.N., and Mavrovouniotis, M.L. (1996). Qualitative analysis of biochemical reaction systems. Comput Biol Med 26, 9-24 .10.1016/0010-4825(95)00042-9
[18] Trinh, C.T., Wlaschin, A., and Srienc, F. (2009). Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 81, 813-826 .10.1007/s00253-008-1770-1
[19] Wang, O.L., and Huang, J. (2002). Developing a visual component library for a graphical programming platform using object orientation. Ieee Aero El Sys Mag 17, 16-19 .10.1109/MAES.2002.1010116
[20] Yang, K., Ma, W., Liang, H., Ouyang, Q., Tang, C., and Lai, L. (2007). Dynamic simulations on the arachidonic acid metabolic network. PLoS Comput Biol 3, e55.10.1371/journal.pcbi.0030055
[21] Zevedei-Oancea, I., and Schuster, S. (2011). Topological analysis of metabolic networks based on petri net theory. Stud Health Technol Inform 162, 17-37 .
AI Summary AI Mindmap
PDF(352 KB)

Accesses

Citations

Detail

Sections
Recommended

/