[1] Barkinge, J.L., Gudi, R., Sarah, H., Chu, F., Borthakur, A., Prabhakar, B.S., and Prasad, K.V. (2009). The p53-induced Siva-1 plays a significant role in cisplatin-mediated apoptosis.
J Carcinog 8, 2.
10.4103/1477-3163.45389[2] Beckerman, R., and Prives, C. (2010). Transcriptional regulation by p53.
Cold Spring Harb Perspect Biol 2, a000935.
10.1101/cshperspect.a000935[3] Cao, C., Ren, X., Kharbanda, S., Koleske, A., Prasad, K.V., and Kufe, D. (2001). The ARG tyrosine kinase interacts with Siva-1 in the apoptotic response to oxidative stress.
J Biol Chem 276, 11465-11468 .
10.1074/jbc.C100050200[4] Chambers, A.F., Groom, A.C., and MacDonald, I.C. (2002). Dissemination and growth of cancer cells in metastatic sites.
Nat Rev Cancer 2, 563-572 .
10.1038/nrc865[5] Chu, F., Barkinge, J., Hawkins, S., Gudi, R., Salgia, R., and Kanteti, P.V. (2005). Expression of Siva-1 protein or its putative amphipathic helical region enhances cisplatin-induced apoptosis in breast cancer cells: effect of elevated levels of BCL-2.
Cancer Res 65, 5301-5309 .
10.1158/0008-5472.CAN-04-3270[6] Daoud, S.S., Munson, P.J., Reinhold, W., Young, L., Prabhu, V.V., Yu, Q., LaRose, J., Kohn, K.W., Weinstein, J.N., and Pommier, Y. (2003). Impact of p53 knockout and topotecan treatment on gene expression profiles in human colon carcinoma cells: a pharmacogenomic study.
Cancer Res 63, 2782-2793 .
[7] Du, W., Jiang, P., Li, N., Mei, Y., Wang, X., Wen, L., Yang, X., and Wu, M. (2009). Suppression of p53 activity by Siva1.
Cell Death Differ 16, 1493-1504 .
10.1038/cdd.2009.89[8] E, S., Lai, Y.J., Tsukahara, R., Chen, C.S., Fujiwara, Y., Yue, J., Yu, J.H., Guo, H., Kihara, A., Tigyi, G.,
. (2009). Lysophosphatidic acid 2 receptor-mediated supramolecular complex formation regulates its antiapoptotic effect.
J Biol Chem 284, 14558-14571 .
[9] Elmore, S. (2007). Apoptosis: a review of programmed cell death.
Toxicol Pathol 35, 495-516 .
10.1080/01926230701320337[10] Fortin, A., MacLaurin, J.G., Arbour, N., Cregan, S.P., Kushwaha, N., Callaghan, S.M., Park, D.S., Albert, P.R., and Slack, R.S. (2004). The proapoptotic gene SIVA is a direct transcriptional target for the tumor suppressors p53 and E2F1.
J Biol Chem 279, 28706-28714 .
10.1074/jbc.M400376200[11] Gudi, R., Barkinge, J., Hawkins, S., Chu, F., Manicassamy, S., Sun, Z., Duke-Cohan, J.S., and Prasad, K.V. (2006). Siva-1 negatively regulates NF-kappaB activity: effect on T-cell receptor-mediated activation-induced cell death (AICD).
Oncogene 25, 3458-3462 .
10.1038/sj.onc.1209381[12] Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53.
Nature 387, 296-299 .
10.1038/387296a0[13] Henke, A., Launhardt, H., Klement, K., Stelzner, A., Zell, R., and Munder, T. (2000). Apoptosis in coxsackievirus B3-caused diseases: interaction between the capsid protein VP2 and the proapoptotic protein siva.
J Virol 74, 4284-4290 .
10.1128/JVI.74.9.4284-4290.2000[14] Henke, A., Nestler, M., Strunze, S., Saluz, H.P., Hortschansky, P., Menzel, B., Martin, U., Zell, R., Stelzner, A., and Munder, T. (2001). The apoptotic capability of coxsackievirus B3 is influenced by the efficient interaction between the capsid protein VP2 and the proapoptotic host protein Siva.
Virology 289, 15-22 .
10.1006/viro.2001.1082[15] Jacobs, S.B., Basak, S., Murray, J.I., Pathak, N., and Attardi, L.D. (2007). Siva is an apoptosis-selective p53 target gene important for neuronal cell death.
Cell Death Differ 14, 1374-1385 .
10.1038/sj.cdd.4402128[16] Korsmeyer, S.J. (1999). BCL-2 gene family and the regulation of programmed cell death.
Cancer Res 59, 1693s-1700s .
[17] Kubbutat, M.H., Jones, S.N., and Vousden, K.H. (1997). Regulation of p53 stability by Mdm2.
Nature 387, 299-303 .
10.1038/387299a0[18] Li, N., Jiang, P., Du, W., Wu, Z., Li, C., Qiao, M., Yang, X., and Wu, M. (2011). Siva1 suppresses epithelial-mesenchymal transition and metastasis of tumor cells by inhibiting stathmin and stabilizing microtubules.
Proc Natl Acad Sci U S A 108, 12851-12856 .
10.1073/pnas.1017372108[19] Lin, F.T., Lai, Y.J., Makarova, N., Tigyi, G., and Lin, W.C. (2007). The lysophosphatidic acid 2 receptor mediates down-regulation of Siva-1 to promote cell survival.
J Biol Chem 282, 37759-37769 .
10.1074/jbc.M705025200[20] Manna, T., Thrower, D.A., Honnappa, S., Steinmetz, M.O., and Wilson, L. (2009). Regulation of microtubule dynamic instability in vitro by differentially phosphorylated stathmin.
J Biol Chem 284, 15640-15649 .
10.1074/jbc.M900343200[21] Maya, R., Balass, M., Kim, S.T., Shkedy, D., Leal, J.F., Shifman, O., Moas, M., Buschmann, T., Ronai, Z., Shiloh, Y.,
. (2001). ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage.
Genes Dev 15, 1067-1077 .
10.1101/gad.886901[22] Muller, P.A., Vousden, K.H., and Norman, J.C. (2011). p53 and its mutants in tumor cell migration and invasion.
J Cell Biol 192, 209-218 .
10.1083/jcb.201009059[23] Okuno, K., Yasutomi, M., Nishimura, N., Arakawa, T., Shiomi, M., Hida,J., Ueda, K., and Minami,K. (2001). Gene expression analysis in colorectal cancer using practical DNA array filter.
Dis Colon Rectum 44, 295-299 .
10.1007/BF02234309[24] Padanilam, B.J., Lewington, A.J., and Hammerman, M.R. (1998). Expression of CD27 and ischemia/reperfusion-induced expression of its ligand Siva in rat kidneys.
Kidney Int 54, 1967-1975 .
10.1046/j.1523-1755.1998.00197.x[25] Polyak, K., and Weinberg, R.A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits.
Nat Rev Cancer 9, 265-273 .
10.1038/nrc2620[26] Prasad, K.V., Ao, Z., Yoon, Y., Wu, M.X., Rizk, M., Jacquot, S., and Schlossman, S.F. (1997). CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein.
Proc Natl Acad Sci U S A 94, 6346-6351 .
10.1073/pnas.94.12.6346[27] Py, B., Bouchet, J., Jacquot, G., Sol-Foulon, N., Basmaciogullari, S., Schwartz, O., Biard-Piechaczyk, M., and Benichou, S. (2007). The Siva protein is a novel intracellular ligand of the CD4 receptor that promotes HIV-1 envelope-induced apoptosis in T-lymphoid cells.
Apoptosis 12, 1879-1892 .
10.1007/s10495-007-0106-4[28] Py, B., Slomianny, C., Auberger, P., Petit, P.X., and Benichou, S. (2004). Siva-1 and an alternative splice form lacking the death domain, Siva-2, similarly induce apoptosis in T lymphocytes via a caspase-dependent mitochondrial pathway.
J Immunol 172, 4008-4017 .
[29] Rana, S., Maples, P.B., Senzer, N., and Nemunaitis, J. (2008). Stathmin 1: a novel therapeutic target for anticancer activity.
Expert Rev Anticancer Ther 8, 1461-1470 .
10.1586/14737140.8.9.1461[30] Resch, U., Schichl, Y.M., Winsauer, G., Gudi, R., Prasad, K., and de Martin, R. (2009). Siva1 is a XIAP-interacting protein that balances NFkappaB and JNK signalling to promote apoptosis.
J Cell Sci 122, 2651-2661 .
10.1242/jcs.049940[31] Shimoda, H.K., Shide, K., Kameda, T., Matsunaga, T., and Shimoda, K. (2010). Tyrosine kinase 2 interacts with the proapoptotic protein Siva-1 and augments its apoptotic functions.
Biochem Biophys Res Commun 400, 252-257 .
10.1016/j.bbrc.2010.08.051[32] Spinicelli, S., Nocentini, G., Ronchetti, S., Krausz, L.T., Bianchini, R., and Riccardi, C. (2002). GITR interacts with the pro-apoptotic protein Siva and induces apoptosis.
Cell Death Differ 9, 1382-1384 .
10.1038/sj.cdd.4401140[33] Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions in development and disease.
Cell 139, 871-890 .
10.1016/j.cell.2009.11.007[34] Thompson, C.B. (1995). Apoptosis in the pathogenesis and treatment of disease.
Science 267, 1456-1462 .
10.1126/science.7878464[35] Vaux, D.L., and Korsmeyer, S.J. (1999). Cell death in development.
Cell 96, 245-254 .
10.1016/S0092-8674(00)80564-4[36] Vogelstein, B., Lane, D., and Levine, A.J. (2000). Surfing the p53 network.
Nature 408, 307-310 .
10.1038/35042675[37] Vousden, K.H., and Lu, X. (2002). Live or let die: the cell’s response to p53.
Nat Rev Cancer 2, 594-604 .
10.1038/nrc864[38] Walmsley, S.R., Chilvers, E.R., Thompson, A.A., Vaughan, K., Marriott, H.M., Parker, L.C., Shaw, G., Parmar, S., Schneider, M., Sabroe, I.,
. (2011). Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice.
J Clin Invest 121, 1053-1063 .
10.1172/JCI43273[39] Xiao, H., Palhan, V., Yang, Y., and Roeder, R.G. (2000). TIP30 has an intrinsic kinase activity required for up-regulation of a subset of apoptotic genes.
EMBO J 19, 956-963 .
10.1093/emboj/19.5.956[40] Xue, L., Chu, F., Cheng, Y., Sun, X., Borthakur, A., Ramarao, M., Pandey, P., Wu, M., Schlossman, S.F., and Prasad, K.V. (2002). Siva-1 binds to and inhibits BCL-X(L)-mediated protection against UV radiation-induced apoptosis.
Proc Natl Acad Sci U S A 99, 6925-6930 .
10.1073/pnas.102182299[41] Yan, J., Menendez, D., Yang, X.P., Resnick, M.A., and Jetten, A.M. (2009). A regulatory loop composed of RAP80-HDM2-p53 provides RAP80-enhanced p53 degradation by HDM2 in response to DNA damage.
J Biol Chem 284, 19280-19289 .
10.1074/jbc.M109.013102[42] Yoon, Y., Ao, Z., Cheng, Y., Schlossman, S.F., and Prasad, K.V. (1999). Murine Siva-1 and Siva-2, alternate splice forms of the mouse Siva gene, both bind to CD27 but differentially transduce apoptosis.
Oncogene 18, 7174-7179 .
10.1038/sj.onc.1203144