[1] Alabadá, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Más, P., and Kay, S.A. (2001). Reciprocal regulation between
TOC1 and
LHY/CCA1 within the Arabidopsis circadian clock.
Science 293, 880-883 .
10.1126/science.1061320[2] Basu, D., Dehesh, K., Schneider-Poetsch, H.J., Harrington, S.E., McCouch, S.R., and Quail, P.H. (2000). Rice
PHYC gene: struc-ture, expression, map position and evolution.
Plant Mol Biol 44, 27-42 .
10.1023/A:1006488119301[3] Benhamed, M., Bertrand, C., Servet, C., and Zhou, D.X. (2006).
Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression.
Plant Cell 18, 2893-2903 .
10.1105/tpc.106.043489[4] Benhamed, M., Martin-Magniette, M.L., Taconnat, L., Bitton, F., Servet, C., De Clercq, R., De Meyer, B., Buysschaert, C., Rom-bauts, S., Villarroel, R.,
. (2008). Genome-scale
Arabidopsispromoter array identifies targets of the histone acetyltransferase GCN5.
Plant J 56, 493-504 .
10.1111/j.1365-313X.2008.03606.x[5] Berger, S.L. (2007). The complex language of chromatin regulation during transcription.
Nature 447, 407-412 .
10.1038/nature05915[6] Bertrand, C., Benhamed, M., Li, Y.F., Ayadi, M., Lemonnier, G., Renou, J.P., Delarue, M., and Zhou, D.X. (2005).
Arabidopsis HAF2 gene encoding TATA-binding protein (TBP)-associated factor TAF1, is required to integrate light signals to regulate gene expression and growth.
J Biol Chem 280, 1465-1473 .
10.1074/jbc.M409000200[7] Brosché, M., Schuler, M.A., Kalbina, I., Connor, L., and Strid, A. (2002). Gene regulation by low level UV-B radiation: identification by DNA array analysis.
Photochem Photobiol Sci 1, 656-664 .
10.1039/b202659g[8] Brown, B.A., Cloix, C., Jiang, G.H., Kaiserli, E., Herzyk, P., Klieben-stein, D.J., and Jenkins, G.I.(2005). A UV-B-specific signaling component orchestrates plant UV protection.
Proc Natl Acad Sci U S A 102, 18225-18230 .
10.1073/pnas.0507187102[9] Brown, B.A., and Jenkins, G.I. (2008). UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature
Arabidopsisleaf tissue by requirement for UVR8, HY5, and HYH.
Plant Physiol 146, 576-588 .
10.1104/pp.107.108456[10] Buck, M.J., and Lieb, J.D. (2004). ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin im-munoprecipitation experiments.
Genomics 83, 349-360 .
10.1016/j.ygeno.2003.11.004[11] Cantón, F.R., and Quail, P.H. (1999). Both phyA and phyB mediate light-imposed repression of
PHYA gene expression in Arabidopsis.
Plant Physiol 121, 1207-1216 .
10.1104/pp.121.4.1207[12] Casal, J.J., and Mazzella, M.A. (1998). Conditional synergism be-tween cryptochrome 1 and phytochrome B is shown by the analysis of
phyA,
phyB, and
hy4 simple, double, and triple mu-tants in Arabidopsis.
Plant Physiol 118, 19-25 .
10.1104/pp.118.1.19[13] Casati, P., Stapleton, A.E., Blum, J.E., and Walbot, V. (2006). Ge-nome-wide analysis of high-altitude maize and gene knockdown stocks implicates chromatin remodeling proteins in response to UV-B.
Plant J 46, 613-627 .
10.1111/j.1365-313X.2006.02721.x[14] Casati, P., and Walbot, V. (2003). Gene expression profiling in re-sponse to ultraviolet radiation in maize genotypes with varying flavonoid content.
Plant Physiol 132, 1739-1754 .
10.1104/pp.103.022871[15] Casati, P., and Walbot, V. (2004). Rapid transcriptome responses of maize (
Zea mays) to UV-B in irradiated and shielded tissues.
Genome Biol 5, R16.
10.1186/gb-2004-5-3-r16[16] Castillon, A., Shen, H., and Huq, E. (2007). Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks.
Trends Plant Sci 12, 514-521 .
10.1016/j.tplants.2007.10.001[17] Charron, J.B., He, H., Elling, A.A., and Deng, X.W. (2009). Dynamic landscapes of four histone modifications during deetiolation in
Arabidopsis.
Plant Cell 21, 3732-3748 .
10.1105/tpc.109.066845[18] Chua, Y.L., Brown, A.P., and Gray, J.C. (2001). Targeted histone acetylation and altered nuclease accessibility over short regions of the pea plastocyanin gene.
Plant Cell 13, 599-612 .
[19] Chua, Y.L., Watson, L.A., and Gray, J.C. (2003). The transcriptional enhancer of the pea plastocyanin gene associates with the nu-clear matrix and regulates gene expression through histone ace-tylation.
Plant Cell 15, 1468-1479 .
10.1105/tpc.011825[20] Covington, M.F., and Harmer, S.L. (2007). The circadian clock regu-lates auxin signaling and responses in
Arabidopsis.
PloS Biol 5, e222.
10.1371/journal.pbio.0050222[21] Covington, M.F., Maloof, J.N., Straume, M., Kay, S.A., and Harmer, S.L. (2008). Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development.
Genome Biol 9, R130.
10.1186/gb-2008-9-8-r130[22] de Montaigu, A., Tóth, R., and Coupland, G. (2010). Plant develop-ment goes like clockwork.
Trends Genet 26, 296-306 .
10.1016/j.tig.2010.04.003[23] Dehesh, K., Franci, C., Parks, B.M., Seeley, K.A., Short, T.W., Tep-perman, J.M., and Quail, P.H. (1993).
ArabidopsisHY8 locus encodes phytochrome A.
Plant Cell 5, 1081-1088 .
[24] Dehesh, K., Tepperman, J., Christensen, A.H., and Quail, P.H. (1991). phyB is evolutionarily conserved and constitutively ex-pressed in rice seedling shoots.
Mol Gen Genet 225, 305-313 .
10.1007/BF00269863[25] Deng, X.W., Caspar, T., and Quail, P.H. (1991).
cop1: a regulatory locus involved in light-controlled development and gene expres-sion in
Arabidopsis.
Genes Dev 5, 1172-1182 .
10.1101/gad.5.7.1172[26] Deng, X.W., Matsui, M., Wei, N., Wagner, D., Chu, A.M., Feldmann, K.A., and Quail, P.H. (1992). COP1, an
Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain.
Cell 71, 791-801 .
10.1016/0092-8674(92)90555-Q[27] Deng, X.W., and Quail, P.H. (1999). Signalling in light-controlled development.
Semin Cell Dev Biol 10, 121-129 .
10.1006/scdb.1999.0287[28] Duek, P.D., Elmer, M.V., van Oosten, V.R., and Fankhauser, C. (2004). The degradation of HFR1, a putative bHLH class tran-scription factor involved in light signaling, is regulated by phos-phorylation and requires COP1.
Curr Biol 14, 2296-2301 .
10.1016/j.cub.2004.12.026[29] Duek, P.D., and Fankhauser, C. (2005). bHLH class transcription factors take centre stage in phytochrome signalling.
Trends Plant Sci 10, 51-54 .
10.1016/j.tplants.2004.12.005[30] Edwards, K.D., Anderson, P.E., Hall, A., Salathia, N.S., Locke, J.C., Lynn, J.R., Straume, M., Smith, J.Q., and Millar, A.J. (2006).
FLOWERING LOCUS Cmediates natural variation in the high-temperature response of the Arabidopsis circadian clock.
Plant Cell 18, 639-650 .
10.1105/tpc.105.038315[31] Fankhauser, C., and Chory, J. (1997). Light control of plant devel-opment.
Annu Rev Cell Dev Biol 13, 203-229 .
10.1146/annurev.cellbio.13.1.203[32] Favory, J.J., Stec, A., Gruber, H., Rizzini, L., Oravecz, A., Funk, M., Albert, A., Cloix, C., Jenkins, G.I., Oakeley, E.J.,
. (2009). In-teraction of COP1 and UVR8 regulates UV-B-induced photo-morphogenesis and stress acclimation in
Arabidopsis.
EMBO J 28, 591-601 .
10.1038/emboj.2009.4[33] Folta, K.M., Pontin, M.A., Karlin-Neumann, G., Bottini, R., and Spal-ding, E.P. (2003). Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light.
Plant J 36, 203-214 .
10.1046/j.1365-313X.2003.01870.x[34] Gao, Y., Li, J., Strickland, E., Hua, S., Zhao, H., Chen, Z., Qu, L., and Deng, X.W. (2004). An arabidopsis promoter microarray and its initial usage in the identification of HY5 binding targets
in vitro.
Plant Mol Biol 54, 683-699 .
10.1023/B:PLAN.0000040898.86788.59[35] Guo, L., Zhou, J., Elling, A.A., Charron, J.B., and Deng, X.W. (2008). Histone modifications and expression of light-regulated genes in
Arabidopsis are cooperatively influenced by changing light condi-tions.
Plant Physiol 147, 2070-2083 .
10.1104/pp.108.122929[36] Harmer, S.L. (2009). The circadian system in higher plants.
Annu Rev Plant Biol 60, 357-377 .
10.1146/annurev.arplant.043008.092054[37] Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A., and Kay, S.A. (2000). Orches-trated transcription of key pathways in
Arabidopsis by the cir-cadian clock.
Science 290, 2110-2113 .
10.1126/science.290.5499.2110[38] Harmer, S.L., and Kay, S.A. (2005). Positive and negative factors confer phase-specific circadian regulation of transcription in
Arabidopsis.
Plant Cell 17, 1926-1940 .
10.1105/tpc.105.033035[39] He, G., Elling, A.A., and Deng, X.W. (2011). The epigenome and plant development.
Annu Rev Plant Biol 62, 411-435 .
10.1146/annurev-arplant-042110-103806[40] Henderson, I.R., and Jacobsen, S.E. (2007). Epigenetic inheritance in plants.
Nature 447, 418-424 .
10.1038/nature05917[41] Hiltbrunner, A., Tscheuschler, A., Viczián, A., Kunkel, T., Kircher, S., and Sch?fer, E. (2006). FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor.
Plant Cell Physiol 47, 1023-1034 .
10.1093/pcp/pcj087[42] Hiltbrunner, A., Viczián, A., Bury, E., Tscheuschler, A., Kircher, S., Tóth, R., Honsberger, A., Nagy, F., Fankhauser, C., and Sch?fer, E. (2005). Nuclear accumulation of the phytochrome A photore-ceptor requires FHY1.
Curr Biol 15, 2125-2130 .
10.1016/j.cub.2005.10.042[43] Holm, M., Ma, L.G., Qu, L.J., and Deng, X.W. (2002). Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in
Arabidopsis.
Genes Dev 16, 1247-1259 .
10.1101/gad.969702[44] Hudson, M., Ringli, C., Boylan, M.T., and Quail, P.H. (1999). The
FAR1 locus encodes a novel nuclear protein specific to phyto-chrome A signaling.
Genes Dev 13, 2017-2027 .
10.1101/gad.13.15.2017[45] Huq, E., Al-Sady, B., Hudson, M., Kim, C., Apel, K., and Quail, P.H. (2004). Phytochrome-interacting factor 1 is a critical bHLH regu-lator of chlorophyll biosynthesis.
Science 305, 1937-1941 .
10.1126/science.1099728[46] Huq, E., and Quail, P.H. (2002). PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in
Arabidopsis.
EMBO J 21, 2441-2450 .
10.1093/emboj/21.10.2441[47] Jang, I.C., Chung, P.J., Hemmes, H., Jung, C., and Chua, N.H. (2011). Rapid and reversible light-mediated chromatin modifica-tions of
Arabidopsis phytochrome A locus.
Plant Cell 23, 459-470 .
10.1105/tpc.110.080481[48] Jang, I.C., Henriques, R., Seo, H.S., Nagatani, A., and Chua, N.H. (2010).
Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus.
Plant Cell 22, 2370-2383 .
10.1105/tpc.109.072520[49] Jang, I.C., Yang, J.Y., Seo, H.S., and Chua, N.H. (2005). HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis dur-ing phytochrome A signaling.
Genes Dev 19, 593-602 .
10.1101/gad.1247205[50] Jenkins, G.I. (2009). Signal transduction in responses to UV-B radia-tion.
Annu Rev Plant Biol 60, 407-431 .
10.1146/annurev.arplant.59.032607.092953[51] Jiao, Y., Lau, O.S., and Deng, X.W. (2007). Light-regulated transcrip-tional networks in higher plants.
Nat Rev Genet 8, 217-230 .
10.1038/nrg2049[52] Jiao, Y., Ma, L., Strickland, E., and Deng, X.W. (2005). Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and
Arabidopsis.
Plant Cell 17, 3239-3256 .
10.1105/tpc.105.035840[53] Jiao, Y., Yang, H., Ma, L., Sun, N., Yu, H., Liu, T., Gao, Y., Gu, H., Chen, Z., Wada, M.,
. (2003). A genome-wide analysis of blue-light regulation of
Arabidopsis transcription factor gene ex-pression during seedling development.
Plant Physiol 133, 1480-1493 .
10.1104/pp.103.029439[54] Kasahara, M., Swartz, T.E., Olney, M.A., Onodera, A., Mochizuki, N., Fukuzawa, H., Asamizu, E., Tabata, S., Kanegae, H., Takano, M.,
. (2002). Photochemical properties of the flavin mononucleo-tide-binding domains of the phototropins from
Arabidopsis, rice, and
Chlamydomonas reinhardtii.
Plant Physiol 129, 762-773 .
10.1104/pp.002410[55] Kay, S.A., Keith, B., Shinozaki, K., Chye, M.L., and Chua, N.H. (1989). The rice phytochrome gene: structure, autoregulated ex-pression, and binding of GT-1 to a conserved site in the 5′up-stream region.
Plant Cell 1, 351-360 .
10.2307/3869014[56] Khanna, R., Huq, E., Kikis, E.A., Al-Sady, B., Lanzatella, C., and Quail, P.H. (2004). A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific ba-sic helix-loop-helix transcription factors.
Plant Cell 16, 3033-3044 .
10.1105/tpc.104.025643[57] Khanna, R., Shen, Y., Toledo-Ortiz, G., Kikis, E.A., Johannesson, H., Hwang, Y.S., and Quail, P.H. (2006). Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in
Arabidopsis are necessary for optimal deetiolation.
Plant Cell 18, 2157-2171 .
10.1105/tpc.106.042200[58] Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D’Angelo, C., Bornberg-Bauer, E., Kudla, J., and Harter, K. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses.
Plant J 50, 347-363 .
10.1111/j.1365-313X.2007.03052.x[59] Koornneef, M., Rolff, E., and Spruit, C.J.P. (1980). Genetic control of light-inhibited hypocotyl elongation in
Arabidopsis thaliana (L.).
Heynh Z Pflanzenphysiol 100, 147-160 .
[60] Kuno, N., and Furuya, M. (2000). Phytochrome regulation of nuclear gene expression in plants.
Semin Cell Dev Biol 11, 485-493 .
10.1006/scdb.2000.0205[61] Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X.W. (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development.
Plant Cell 19, 731-749 .
10.1105/tpc.106.047688[62] Leivar, P., Monte, E., Al-Sady, B., Carle, C., Storer, A., Alonso, J.M., Ecker, J.R., and Quail, P.H. (2008a). The
Arabidopsisphyto-chrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels.
Plant Cell 20, 337-352 .
10.1105/tpc.107.052142[63] Leivar, P., Monte, E., Oka, Y., Liu, T., Carle, C., Castillon, A., Huq, E., and Quail, P.H. (2008b). Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorpho-genesis in darkness.
Curr Biol 18, 1815-1823 .
10.1016/j.cub.2008.10.058[64] Leivar, P., and Quail, P.H. (2011). PIFs: pivotal components in a cellular signaling hub.
Trends Plant Sci 16, 19-28 .
10.1016/j.tplants.2010.08.003[65] Leivar, P., Tepperman, J.M., Monte, E., Calderon, R.H., Liu, T.L., and Quail, P.H. (2009). Definition of early transcriptional circuitry in-volved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young
Arabidopsisseedlings.
Plant Cell 21, 3535-3553 .
10.1105/tpc.109.070672[66] Li, G., Siddiqui, H., Teng, Y., Lin, R., Wan, X.Y., Li, J., Lau, O.S., Ouyang, X., Dai, M., Wan, J.,
. (2011a). Coordinated tran-scriptional regulation underlying the circadian clock in
Arabidopsis.
Nat Cell Biol 13, 616-622 .
10.1038/ncb2219[67] Li, J., Li, G., Wang, H., and Deng, X.W. (2011b). Phytochrome sig-naling mechanisms.
Arabidopsis Book 9, e0148.
[68] Lin, R., Ding, L., Casola, C., Ripoll, D.R., Feschotte, C., and Wang, H. (2007). Transposase-derived transcription factors regulate light signaling in
Arabidopsis.
Science 318, 1302-1305 .
10.1126/science.1146281[69] Lin, R., Teng, Y., Park, H.J., Ding, L., Black, C., Fang, P., and Wang, H. (2008). Discrete and essential roles of the multiple domains of
ArabidopsisFHY3 in mediating phytochrome A signal transduc-tion.
Plant Physiol 148, 981-992 .
10.1104/pp.108.120436[70] Liu, C., Lu, F., Cui, X., and Cao, X. (2010). Histone methylation in higher plants.
Annu Rev Plant Biol 61, 395-420 .
10.1146/annurev.arplant.043008.091939[71] Liu, H., Liu, B., Zhao, C., Pepper, M., and Lin, C. (2011). The action mechanisms of plant cryptochromes.
Trends Plant Sci 16, 684-691 .
10.1016/j.tplants.2011.09.002[72] Ma, L., Gao, Y., Qu, L., Chen, Z., Li, J., Zhao, H., and Deng, X.W. (2002). Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in
Arabidopsis.
Plant Cell 14, 2383-2398 .
10.1105/tpc.004416[73] Ma, L., Li, J., Qu, L., Hager, J., Chen, Z., Zhao, H., and Deng, X.W. (2001). Light control of
Arabidopsisdevelopment entails coordi-nated regulation of genome expression and cellular pathways.
Plant Cell 13, 2589-2607 .
[74] Ma, L., Sun, N., Liu, X., Jiao, Y., Zhao, H., and Deng, X.W. (2005). Organ-specific expression of
Arabidopsisgenome during devel-opment.
Plant Physiol 138, 80-91 .
10.1104/pp.104.054783[75] Matsumoto, N., Hirano, T., Iwasaki, T., and Yamamoto, N. (2003). Functional analysis and intracellular localization of rice crypto-chromes.
Plant Physiol 133, 1494-1503 .
10.1104/pp.103.025759[76] McClung, C.R. (2008). Comes a time.
Curr Opin Plant Biol 11, 514-520 .
10.1016/j.pbi.2008.06.010[77] Michael, T.P., Mockler, T.C., Breton, G., McEntee, C., Byer, A., Trout, J.D., Hazen, S.P., Shen, R., Priest, H.D., Sullivan, C.M.,
. (2008). Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules.
PLoS Genet 4, e14.
10.1371/journal.pgen.0040014[78] Monte, E., Tepperman, J.M., Al-Sady, B., Kaczorowski, K.A., Alonso, J.M., Ecker, J.R., Li, X., Zhang, Y., and Quail, P.H. (2004). The phytochrome-interacting transcription factor, PIF3, acts early, se-lectively, and positively in light-induced chloroplast development.
Proc Natl Acad Sci U S A 101, 16091-16098 .
10.1073/pnas.0407107101[79] Nagatani, A., Chory, J., and Furuya, M. (1991). Phytochrome B is not detectable in the
hy3mutant of
Arabidopsis, which is deficient in responding to end-of-day far-red light treatments.
Plant Cell Physiol 32, 1119-1112 .
[80] Nagatani, A., Reed, J.W., and Chory, J. (1993). Isolation and initial characterization of
Arabidopsismutants that are deficient in phy-tochrome A.
Plant Physiol 102, 269-277 .
[81] Neff, M.M., and Chory, J. (1998). Genetic interactions between phy-tochrome A, phytochrome B, and cryptochrome 1 during Arabi-dopsis development.
Plant Physiol 118, 27-35 .
10.1104/pp.118.1.27[82] Neff, M.M., and Van Volkenburgh, E. (1994). Light-stimulated coty-ledon expansion in Arabidopsis seedlings (the role of phyto-chrome B).
Plant Physiol 104, 1027-1032 .
[83] Ni, M., Tepperman, J.M., and Quail, P.H. (1998). PIF3, a phyto-chrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein.
Cell 95, 657-667 .
10.1016/S0092-8674(00)81636-0[84] Oh, E., Kang, H., Yamaguchi, S., Park, J., Lee, D., Kamiya, Y., and Choi, G. (2009). Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in
Arabidopsis.
Plant Cell 21, 403-419 .
10.1105/tpc.108.064691[85] Oh, E., Kim, J., Park, E., Kim, J.I., Kang, C., and Choi, G. (2004). PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in
Arabidopsisthaliana.
Plant Cell 16, 3045-3058 .
10.1105/tpc.104.025163[86] Oh, E., Yamaguchi, S., Hu, J., Yusuke, J., Jung, B., Paik, I., Lee, H.S., Sun, T.P., Kamiya, Y., and Choi, G. (2007). PIL5, a phyto-chrome-interacting bHLH protein, regulates gibberellin respon-siveness by binding directly to the
GAIand
RGApromoters in
Arabidopsisseeds.
Plant Cell 19, 1192-1208 .
10.1105/tpc.107.050153[87] Oh, E., Yamaguchi, S., Kamiya, Y., Bae, G., Chung, W.I., and Choi, G. (2006). Light activates the degradation of PIL5 protein to pro-mote seed germination through gibberellin in
Arabidopsis.
Plant J 47, 124-139 .
10.1111/j.1365-313X.2006.02773.x[88] Ohgishi, M., Saji, K., Okada, K., and Sakai, T. (2004). Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in
Arabidopsis.
Proc Natl Acad Sci U S A 101, 2223-2228 .
10.1073/pnas.0305984101[89] Osterlund, M.T., Hardtke, C.S., Wei, N., and Deng, X.W. (2000). Targeted destabilization of HY5 during light-regulated develop-ment of
Arabidopsis.
Nature 405, 462-466 .
10.1038/35013076[90] Ouyang, X., Li, J., Li, G., Li, B., Chen, B., Shen, H., Huang, X., Mo, X., Wan, X., Lin, R.,
. (2011). Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel func-tion in
Arabidopsisdevelopment.
Plant Cell 23, 2514-2535 .
10.1105/tpc.111.085126[91] Oyama, T., Shimura, Y., and Okada, K. (1997). The
ArabidopsisHY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl.
Genes Dev 11, 2983-2995 .
10.1101/gad.11.22.2983[92] Ozsolak, F., and Milos, P.M. (2011). RNA sequencing: advances, challenges and opportunities.
Nat Rev Genet 12, 87-98 .
10.1038/nrg2934[93] Parks, B.M., and Quail, P.H. (1993).
hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A.
plant Cell 5, 39-48 .
[94] Pedmale, U.V., Celaya, R.B., and Liscum, E. (2010). Phototropism: mechanism and outcomes.
Arabidopsis Book 8, e0125.
[95] Pfluger, J., and Wagner, D. (2007). Histone modifications and dy-namic regulation of genome accessibility in plants.
Curr Opin Plant Biol 10, 645-652 .
10.1016/j.pbi.2007.07.013[96] Quail, P.H. (1991). Phytochrome: a light-activated molecular switch that regulates plant gene expression.
Annu Rev Genet 25, 389-409 .
10.1146/annurev.ge.25.120191.002133[97] Quail, P.H. (2011). Phytochromes.
Curr Biol 20, R504-R507 .
10.1016/j.cub.2010.04.014[98] Rausenberger, J., Tscheuschler, A., Nordmeier, W., Wüst, F., Timmer, J., Sch?fer, E., Fleck, C., and Hiltbrunner, A. (2011). Photoconversion and nuclear trafficking cycles determine phyto-chrome A’s response profile to far-red light.
Cell 146, 813-825 .
10.1016/j.cell.2011.07.023[99] Reed, J.W., Nagatani, A., Elich, T.D., Fagan, M., and Chory, J. (1994). Phytochrome A and phytochrome B have overlapping but distinct functions in
Arabidopsis development.
Plant Physiol 104, 1139-1149 .
[100] Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M., and Chory, J. (1993). Mutations in the gene for the red/far-red light receptor phyto-chrome B alter cell elongation and physiological responses throughout
Arabidopsis development.
Plant Cell 5, 147-157 .
[101] Rizzini, L., Favory, J.J., Cloix, C., Faggionato, D., O’Hara, A., Kaiserli, E., Baumeister, R., Sch?fer, E., Nagy, F., Jenkins, G.I.,
. (2011). Perception of UV-B by the
Arabidopsis UVR8 protein.
Science 332, 103-106 .
10.1126/science.1200660[102] Schaffer, R., Landgraf, J., Accerbi, M., Simon, V., Larson, M., and Wisman, E. (2001). Microarray analysis of diurnal and cir-cadianregulated genes in
Arabidopsis.
Plant Cell 13, 113-123 .
[103] Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quan-titative monitoring of gene expression patterns with a comple-mentary DNA microarray.
Science 270, 467-470 .
10.1126/science.270.5235.467[104] Sellaro, R., Hoecker, U., Yanovsky, M., Chory, J., and Casal, J.J. (2009). Synergism of red and blue light in the control of
Arabidopsis gene expression and development.
Curr Biol 19, 1216-1220 .
10.1016/j.cub.2009.05.062[105] Sentandreu, M., Martín, G., González-Schain, N., Leivar, P., Soy, J., Tepperman, J.M., Quail, P.H., and Monte, E. (2011). Functional profiling identifies genes involved in organ-specific branches of the PIF3 regulatory network in
Arabidopsis.
Plant Cell 23, 3974-3991 .
10.1105/tpc.111.088161[106] Seo, H.S., Watanabe, E., Tokutomi, S., Nagatani, A., and Chua, N.H. (2004). Photoreceptor ubiquitination by COP1 E3 ligase desensi-tizes phytochrome A signaling.
Genes Dev 18, 617-622 .
10.1101/gad.1187804[107] Seo, H.S., Yang, J.Y., Ishikawa, M., Bolle, C., Ballesteros, M.L., and Chua, N.H. (2003). LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1.
Nature 423, 995-999 .
10.1038/nature01696[108] Servet, C., Conde e Silva, N., and Zhou, D.X. (2010). Histone acetyl-transferase AtGCN5/HAG1 is a versatile regulator of develop-mental and inducible gene expression in
Arabidopsis.
Mol Plant 3, 670-677 .
10.1093/mp/ssq018[109] Shin, J., Kim, K., Kang, H., Zulfugarov, I.S., Bae, G., Lee, C.H., Lee, D., and Choi, G. (2009). Phytochromes promote seedling light responses by inhibiting four negatively-acting phyto-chrome-interacting factors.
Proc Natl Acad Sci U S A 106, 7660-7665 .
10.1073/pnas.0812219106[110] Somers, D.E., Sharrock, R.A., Tepperman, J.M., and Quail, P.H. (1991). The
hy3 long hypocotyl mutant of
Arabidopsis is deficient in phytochrome B.
Plant Cell 3, 1263-1274 .
[111] Sullivan, J.A., Shirasu, K., and Deng, X.W. (2003). The diverse roles of ubiquitin and the 26S proteasome in the life of plants.
Nat Rev Genet 4, 948-958 .
10.1038/nrg1228[112] Tepperman, J.M., Hudson, M.E., Khanna, R., Zhu, T., Chang, S.H., Wang, X., and Quail, P.H. (2004). Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation.
Plant J 38, 725-739 .
10.1111/j.1365-313X.2004.02084.x[113] Tepperman, J.M., Hwang, Y.S., and Quail, P.H. (2006). phyA domi-nates in transduction of red-light signals to rapidly responding genes at the initiation of
Arabidopsis seedling de-etiolation.
Plant J 48, 728-742 .
10.1111/j.1365-313X.2006.02914.x[114] Tepperman, J.M., Zhu, T., Chang, H.S., Wang, X., and Quail, P.H. (2001). Multiple transcription-factor genes are early targets of phytochrome A signaling.
Proc Natl Acad Sci U S A 98, 9437-9442 .
10.1073/pnas.161300998[115] Terzaghi, W.B., and Cashmore, A.R. (1995). Light-regulated tran-scription.
Annu Rev Plant Physiol Plant Mol Biol 46, 445-474 .
10.1146/annurev.pp.46.060195.002305[116] Ulm, R., Baumann, A., Oravecz, A., Máté, Z., Adám, E., Oakeley, E.J., Sch?fer, E., and Nagy, F. (2004). Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of
Arabidopsis.
Proc Natl Acad Sci U S A 101, 1397-1402 .
10.1073/pnas.0308044100[117] Ulm, R., and Nagy, F. (2005). Signalling and gene regulation in re-sponse to ultraviolet light.
Curr Opin Plant Biol 8, 477-482 .
10.1016/j.pbi.2005.07.004[118] Wang, H., and Deng, X.W. (2002).
Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1.
EMBO J 21, 1339-1349 .
10.1093/emboj/21.6.1339[119] Wang, H., and Deng, X.W. (2003). Dissecting the phytochrome A-dependent signaling network in higher plants.
Trends Plant Sci 8, 172-178 .
10.1016/S1360-1385(03)00049-9[120] Wang, H., Ma, L., Habashi, J., Li, J., Zhao, H., and Deng, X.W. (2002). Analysis of far-red light-regulated genome expression profiles of phytochrome A pathway mutants in
Arabidopsis.
Plant J 32, 723-733 .
10.1046/j.1365-313X.2002.01462.x[121] Wang, H., Ma, L.G., Li, J.M., Zhao, H.Y., and Deng, X.W. (2001). Direct interaction of
Arabidopsis cryptochromes with COP1 in light control development.
Science 294, 154-158 .
10.1126/science.1063630[122] Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolu-tionary tool for transcriptomics.
Nat Rev Genet 10, 57-63 .
10.1038/nrg2484[123] Wei, N., and Deng, X.W. (1996). The role of the
COP/DET/FUS genes in light control of
Arabidopsis cseedling development.
Plant Physiol 112, 871-878 .
10.1104/pp.112.3.871[124] Whitelam, G.C., Johnson, E., Peng, J., Carol, P., Anderson, M.L., Cowl, J.S., and Harberd, N.P. (1993). Phytochrome A null mu-tants of
Arabidopsis display a wild-type phenotype in white light.
Plant Cell 5, 757-768 .
[125] Yang, J., Lin, R., Sullivan, J., Hoecker, U., Liu, B., Xu, L., Deng, X.W., and Wang, H. (2005). Light regulates COP1-mediated degrada-tion of HFR1, a transcription factor essential for light signaling in
Arabidopsis.
Plant Cell 17, 804-821 .
10.1105/tpc.104.030205[126] Yi, C., and Deng, X.W. (2005). COP1- from plant photomorpho-genesis to mammalian tumorigenesis.
Trends Cell Biol 15, 618-625 .
10.1016/j.tcb.2005.09.007[127] Yu, X., Liu, H., Klejnot, J., and Lin, C. (2010). The cryptochrome blue light receptors.
Arabidopsis Book 8, e0135.
[128] Zhang, H., He, H., Wang, X., Wang, X., Yang, X., Li, L., and Deng, X.W. (2011). Genome-wide mapping of the HY5-mediated gene networks in
Arabidopsis that involve both transcriptional and post-transcriptional regulation.
Plant J 65, 346-358 .
10.1111/j.1365-313X.2010.04426.x[129] Zhang, X. (2008). The epigenetic landscape of plants.
Science 320, 489-492 .
10.1126/science.1153996