Genomic basis for light control of plant development

Jigang Li1,2, William Terzaghi2,3, Xing Wang Deng1,2()

PDF(270 KB)
PDF(270 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (2) : 106-116. DOI: 10.1007/s13238-012-2016-7
REVIEW
REVIEW

Genomic basis for light control of plant development

  • Jigang Li1,2, William Terzaghi2,3, Xing Wang Deng1,2()
Author information +
History +

Abstract

Light is one of the key environmental signals regulating plant growth and development. Therefore, understanding the mechanisms by which light controls plant development has long been of great interest to plant biologists. Traditional genetic and molecular approaches have successfully identified key regulatory factors in light signaling, but recent genomic studies have revealed massive reprogramming of plant transcriptomes by light, identified binding sites across the entire genome of several pivotal transcription factors in light signaling, and discovered the involvement of epigenetic regulation in light-regulated gene expression. This review summarizes the key genomic work conducted in the last decade which provides new insights into light control of plant development.

Keywords

light control of plant development / photomorphogenesis / gene expression / epigenomic regulation / transcription factors

Cite this article

Download citation ▾
Jigang Li, William Terzaghi, Xing Wang Deng. Genomic basis for light control of plant development. Prot Cell, 2012, 3(2): 106‒116 https://doi.org/10.1007/s13238-012-2016-7

References

[1] Alabadá, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Más, P., and Kay, S.A. (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880-883 .10.1126/science.1061320
[2] Basu, D., Dehesh, K., Schneider-Poetsch, H.J., Harrington, S.E., McCouch, S.R., and Quail, P.H. (2000). Rice PHYC gene: struc-ture, expression, map position and evolution. Plant Mol Biol 44, 27-42 .10.1023/A:1006488119301
[3] Benhamed, M., Bertrand, C., Servet, C., and Zhou, D.X. (2006). Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18, 2893-2903 .10.1105/tpc.106.043489
[4] Benhamed, M., Martin-Magniette, M.L., Taconnat, L., Bitton, F., Servet, C., De Clercq, R., De Meyer, B., Buysschaert, C., Rom-bauts, S., Villarroel, R., . (2008). Genome-scale Arabidopsispromoter array identifies targets of the histone acetyltransferase GCN5. Plant J 56, 493-504 .10.1111/j.1365-313X.2008.03606.x
[5] Berger, S.L. (2007). The complex language of chromatin regulation during transcription. Nature 447, 407-412 .10.1038/nature05915
[6] Bertrand, C., Benhamed, M., Li, Y.F., Ayadi, M., Lemonnier, G., Renou, J.P., Delarue, M., and Zhou, D.X. (2005). Arabidopsis HAF2 gene encoding TATA-binding protein (TBP)-associated factor TAF1, is required to integrate light signals to regulate gene expression and growth. J Biol Chem 280, 1465-1473 .10.1074/jbc.M409000200
[7] Brosché, M., Schuler, M.A., Kalbina, I., Connor, L., and Strid, A. (2002). Gene regulation by low level UV-B radiation: identification by DNA array analysis. Photochem Photobiol Sci 1, 656-664 .10.1039/b202659g
[8] Brown, B.A., Cloix, C., Jiang, G.H., Kaiserli, E., Herzyk, P., Klieben-stein, D.J., and Jenkins, G.I.(2005). A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 102, 18225-18230 .10.1073/pnas.0507187102
[9] Brown, B.A., and Jenkins, G.I. (2008). UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsisleaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146, 576-588 .10.1104/pp.107.108456
[10] Buck, M.J., and Lieb, J.D. (2004). ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin im-munoprecipitation experiments. Genomics 83, 349-360 .10.1016/j.ygeno.2003.11.004
[11] Cantón, F.R., and Quail, P.H. (1999). Both phyA and phyB mediate light-imposed repression of PHYA gene expression in Arabidopsis. Plant Physiol 121, 1207-1216 .10.1104/pp.121.4.1207
[12] Casal, J.J., and Mazzella, M.A. (1998). Conditional synergism be-tween cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mu-tants in Arabidopsis. Plant Physiol 118, 19-25 .10.1104/pp.118.1.19
[13] Casati, P., Stapleton, A.E., Blum, J.E., and Walbot, V. (2006). Ge-nome-wide analysis of high-altitude maize and gene knockdown stocks implicates chromatin remodeling proteins in response to UV-B. Plant J 46, 613-627 .10.1111/j.1365-313X.2006.02721.x
[14] Casati, P., and Walbot, V. (2003). Gene expression profiling in re-sponse to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol 132, 1739-1754 .10.1104/pp.103.022871
[15] Casati, P., and Walbot, V. (2004). Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues. Genome Biol 5, R16.10.1186/gb-2004-5-3-r16
[16] Castillon, A., Shen, H., and Huq, E. (2007). Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12, 514-521 .10.1016/j.tplants.2007.10.001
[17] Charron, J.B., He, H., Elling, A.A., and Deng, X.W. (2009). Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21, 3732-3748 .10.1105/tpc.109.066845
[18] Chua, Y.L., Brown, A.P., and Gray, J.C. (2001). Targeted histone acetylation and altered nuclease accessibility over short regions of the pea plastocyanin gene. Plant Cell 13, 599-612 .
[19] Chua, Y.L., Watson, L.A., and Gray, J.C. (2003). The transcriptional enhancer of the pea plastocyanin gene associates with the nu-clear matrix and regulates gene expression through histone ace-tylation. Plant Cell 15, 1468-1479 .10.1105/tpc.011825
[20] Covington, M.F., and Harmer, S.L. (2007). The circadian clock regu-lates auxin signaling and responses in Arabidopsis. PloS Biol 5, e222.10.1371/journal.pbio.0050222
[21] Covington, M.F., Maloof, J.N., Straume, M., Kay, S.A., and Harmer, S.L. (2008). Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9, R130.10.1186/gb-2008-9-8-r130
[22] de Montaigu, A., Tóth, R., and Coupland, G. (2010). Plant develop-ment goes like clockwork. Trends Genet 26, 296-306 .10.1016/j.tig.2010.04.003
[23] Dehesh, K., Franci, C., Parks, B.M., Seeley, K.A., Short, T.W., Tep-perman, J.M., and Quail, P.H. (1993). ArabidopsisHY8 locus encodes phytochrome A. Plant Cell 5, 1081-1088 .
[24] Dehesh, K., Tepperman, J., Christensen, A.H., and Quail, P.H. (1991). phyB is evolutionarily conserved and constitutively ex-pressed in rice seedling shoots. Mol Gen Genet 225, 305-313 .10.1007/BF00269863
[25] Deng, X.W., Caspar, T., and Quail, P.H. (1991). cop1: a regulatory locus involved in light-controlled development and gene expres-sion in Arabidopsis. Genes Dev 5, 1172-1182 .10.1101/gad.5.7.1172
[26] Deng, X.W., Matsui, M., Wei, N., Wagner, D., Chu, A.M., Feldmann, K.A., and Quail, P.H. (1992). COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell 71, 791-801 .10.1016/0092-8674(92)90555-Q
[27] Deng, X.W., and Quail, P.H. (1999). Signalling in light-controlled development. Semin Cell Dev Biol 10, 121-129 .10.1006/scdb.1999.0287
[28] Duek, P.D., Elmer, M.V., van Oosten, V.R., and Fankhauser, C. (2004). The degradation of HFR1, a putative bHLH class tran-scription factor involved in light signaling, is regulated by phos-phorylation and requires COP1. Curr Biol 14, 2296-2301 .10.1016/j.cub.2004.12.026
[29] Duek, P.D., and Fankhauser, C. (2005). bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci 10, 51-54 .10.1016/j.tplants.2004.12.005
[30] Edwards, K.D., Anderson, P.E., Hall, A., Salathia, N.S., Locke, J.C., Lynn, J.R., Straume, M., Smith, J.Q., and Millar, A.J. (2006). FLOWERING LOCUS Cmediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18, 639-650 .10.1105/tpc.105.038315
[31] Fankhauser, C., and Chory, J. (1997). Light control of plant devel-opment. Annu Rev Cell Dev Biol 13, 203-229 .10.1146/annurev.cellbio.13.1.203
[32] Favory, J.J., Stec, A., Gruber, H., Rizzini, L., Oravecz, A., Funk, M., Albert, A., Cloix, C., Jenkins, G.I., Oakeley, E.J., . (2009). In-teraction of COP1 and UVR8 regulates UV-B-induced photo-morphogenesis and stress acclimation in Arabidopsis. EMBO J 28, 591-601 .10.1038/emboj.2009.4
[33] Folta, K.M., Pontin, M.A., Karlin-Neumann, G., Bottini, R., and Spal-ding, E.P. (2003). Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J 36, 203-214 .10.1046/j.1365-313X.2003.01870.x
[34] Gao, Y., Li, J., Strickland, E., Hua, S., Zhao, H., Chen, Z., Qu, L., and Deng, X.W. (2004). An arabidopsis promoter microarray and its initial usage in the identification of HY5 binding targets in vitro. Plant Mol Biol 54, 683-699 .10.1023/B:PLAN.0000040898.86788.59
[35] Guo, L., Zhou, J., Elling, A.A., Charron, J.B., and Deng, X.W. (2008). Histone modifications and expression of light-regulated genes in Arabidopsis are cooperatively influenced by changing light condi-tions. Plant Physiol 147, 2070-2083 .10.1104/pp.108.122929
[36] Harmer, S.L. (2009). The circadian system in higher plants. Annu Rev Plant Biol 60, 357-377 .10.1146/annurev.arplant.043008.092054
[37] Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A., and Kay, S.A. (2000). Orches-trated transcription of key pathways in Arabidopsis by the cir-cadian clock. Science 290, 2110-2113 .10.1126/science.290.5499.2110
[38] Harmer, S.L., and Kay, S.A. (2005). Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 17, 1926-1940 .10.1105/tpc.105.033035
[39] He, G., Elling, A.A., and Deng, X.W. (2011). The epigenome and plant development. Annu Rev Plant Biol 62, 411-435 .10.1146/annurev-arplant-042110-103806
[40] Henderson, I.R., and Jacobsen, S.E. (2007). Epigenetic inheritance in plants. Nature 447, 418-424 .10.1038/nature05917
[41] Hiltbrunner, A., Tscheuschler, A., Viczián, A., Kunkel, T., Kircher, S., and Sch?fer, E. (2006). FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. Plant Cell Physiol 47, 1023-1034 .10.1093/pcp/pcj087
[42] Hiltbrunner, A., Viczián, A., Bury, E., Tscheuschler, A., Kircher, S., Tóth, R., Honsberger, A., Nagy, F., Fankhauser, C., and Sch?fer, E. (2005). Nuclear accumulation of the phytochrome A photore-ceptor requires FHY1. Curr Biol 15, 2125-2130 .10.1016/j.cub.2005.10.042
[43] Holm, M., Ma, L.G., Qu, L.J., and Deng, X.W. (2002). Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 16, 1247-1259 .10.1101/gad.969702
[44] Hudson, M., Ringli, C., Boylan, M.T., and Quail, P.H. (1999). The FAR1 locus encodes a novel nuclear protein specific to phyto-chrome A signaling. Genes Dev 13, 2017-2027 .10.1101/gad.13.15.2017
[45] Huq, E., Al-Sady, B., Hudson, M., Kim, C., Apel, K., and Quail, P.H. (2004). Phytochrome-interacting factor 1 is a critical bHLH regu-lator of chlorophyll biosynthesis. Science 305, 1937-1941 .10.1126/science.1099728
[46] Huq, E., and Quail, P.H. (2002). PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21, 2441-2450 .10.1093/emboj/21.10.2441
[47] Jang, I.C., Chung, P.J., Hemmes, H., Jung, C., and Chua, N.H. (2011). Rapid and reversible light-mediated chromatin modifica-tions of Arabidopsis phytochrome A locus. Plant Cell 23, 459-470 .10.1105/tpc.110.080481
[48] Jang, I.C., Henriques, R., Seo, H.S., Nagatani, A., and Chua, N.H. (2010). Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus. Plant Cell 22, 2370-2383 .10.1105/tpc.109.072520
[49] Jang, I.C., Yang, J.Y., Seo, H.S., and Chua, N.H. (2005). HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis dur-ing phytochrome A signaling. Genes Dev 19, 593-602 .10.1101/gad.1247205
[50] Jenkins, G.I. (2009). Signal transduction in responses to UV-B radia-tion. Annu Rev Plant Biol 60, 407-431 .10.1146/annurev.arplant.59.032607.092953
[51] Jiao, Y., Lau, O.S., and Deng, X.W. (2007). Light-regulated transcrip-tional networks in higher plants. Nat Rev Genet 8, 217-230 .10.1038/nrg2049
[52] Jiao, Y., Ma, L., Strickland, E., and Deng, X.W. (2005). Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis. Plant Cell 17, 3239-3256 .10.1105/tpc.105.035840
[53] Jiao, Y., Yang, H., Ma, L., Sun, N., Yu, H., Liu, T., Gao, Y., Gu, H., Chen, Z., Wada, M., . (2003). A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene ex-pression during seedling development. Plant Physiol 133, 1480-1493 .10.1104/pp.103.029439
[54] Kasahara, M., Swartz, T.E., Olney, M.A., Onodera, A., Mochizuki, N., Fukuzawa, H., Asamizu, E., Tabata, S., Kanegae, H., Takano, M., . (2002). Photochemical properties of the flavin mononucleo-tide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiol 129, 762-773 .10.1104/pp.002410
[55] Kay, S.A., Keith, B., Shinozaki, K., Chye, M.L., and Chua, N.H. (1989). The rice phytochrome gene: structure, autoregulated ex-pression, and binding of GT-1 to a conserved site in the 5′up-stream region. Plant Cell 1, 351-360 .10.2307/3869014
[56] Khanna, R., Huq, E., Kikis, E.A., Al-Sady, B., Lanzatella, C., and Quail, P.H. (2004). A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific ba-sic helix-loop-helix transcription factors. Plant Cell 16, 3033-3044 .10.1105/tpc.104.025643
[57] Khanna, R., Shen, Y., Toledo-Ortiz, G., Kikis, E.A., Johannesson, H., Hwang, Y.S., and Quail, P.H. (2006). Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in Arabidopsis are necessary for optimal deetiolation. Plant Cell 18, 2157-2171 .10.1105/tpc.106.042200
[58] Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D’Angelo, C., Bornberg-Bauer, E., Kudla, J., and Harter, K. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50, 347-363 .10.1111/j.1365-313X.2007.03052.x
[59] Koornneef, M., Rolff, E., and Spruit, C.J.P. (1980). Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.). Heynh Z Pflanzenphysiol 100, 147-160 .
[60] Kuno, N., and Furuya, M. (2000). Phytochrome regulation of nuclear gene expression in plants. Semin Cell Dev Biol 11, 485-493 .10.1006/scdb.2000.0205
[61] Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X.W. (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731-749 .10.1105/tpc.106.047688
[62] Leivar, P., Monte, E., Al-Sady, B., Carle, C., Storer, A., Alonso, J.M., Ecker, J.R., and Quail, P.H. (2008a). The Arabidopsisphyto-chrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20, 337-352 .10.1105/tpc.107.052142
[63] Leivar, P., Monte, E., Oka, Y., Liu, T., Carle, C., Castillon, A., Huq, E., and Quail, P.H. (2008b). Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorpho-genesis in darkness. Curr Biol 18, 1815-1823 .10.1016/j.cub.2008.10.058
[64] Leivar, P., and Quail, P.H. (2011). PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16, 19-28 .10.1016/j.tplants.2010.08.003
[65] Leivar, P., Tepperman, J.M., Monte, E., Calderon, R.H., Liu, T.L., and Quail, P.H. (2009). Definition of early transcriptional circuitry in-volved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsisseedlings. Plant Cell 21, 3535-3553 .10.1105/tpc.109.070672
[66] Li, G., Siddiqui, H., Teng, Y., Lin, R., Wan, X.Y., Li, J., Lau, O.S., Ouyang, X., Dai, M., Wan, J., . (2011a). Coordinated tran-scriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13, 616-622 .10.1038/ncb2219
[67] Li, J., Li, G., Wang, H., and Deng, X.W. (2011b). Phytochrome sig-naling mechanisms. Arabidopsis Book 9, e0148.
[68] Lin, R., Ding, L., Casola, C., Ripoll, D.R., Feschotte, C., and Wang, H. (2007). Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318, 1302-1305 .10.1126/science.1146281
[69] Lin, R., Teng, Y., Park, H.J., Ding, L., Black, C., Fang, P., and Wang, H. (2008). Discrete and essential roles of the multiple domains of ArabidopsisFHY3 in mediating phytochrome A signal transduc-tion. Plant Physiol 148, 981-992 .10.1104/pp.108.120436
[70] Liu, C., Lu, F., Cui, X., and Cao, X. (2010). Histone methylation in higher plants. Annu Rev Plant Biol 61, 395-420 .10.1146/annurev.arplant.043008.091939
[71] Liu, H., Liu, B., Zhao, C., Pepper, M., and Lin, C. (2011). The action mechanisms of plant cryptochromes. Trends Plant Sci 16, 684-691 .10.1016/j.tplants.2011.09.002
[72] Ma, L., Gao, Y., Qu, L., Chen, Z., Li, J., Zhao, H., and Deng, X.W. (2002). Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell 14, 2383-2398 .10.1105/tpc.004416
[73] Ma, L., Li, J., Qu, L., Hager, J., Chen, Z., Zhao, H., and Deng, X.W. (2001). Light control of Arabidopsisdevelopment entails coordi-nated regulation of genome expression and cellular pathways. Plant Cell 13, 2589-2607 .
[74] Ma, L., Sun, N., Liu, X., Jiao, Y., Zhao, H., and Deng, X.W. (2005). Organ-specific expression of Arabidopsisgenome during devel-opment. Plant Physiol 138, 80-91 .10.1104/pp.104.054783
[75] Matsumoto, N., Hirano, T., Iwasaki, T., and Yamamoto, N. (2003). Functional analysis and intracellular localization of rice crypto-chromes. Plant Physiol 133, 1494-1503 .10.1104/pp.103.025759
[76] McClung, C.R. (2008). Comes a time. Curr Opin Plant Biol 11, 514-520 .10.1016/j.pbi.2008.06.010
[77] Michael, T.P., Mockler, T.C., Breton, G., McEntee, C., Byer, A., Trout, J.D., Hazen, S.P., Shen, R., Priest, H.D., Sullivan, C.M., . (2008). Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 4, e14.10.1371/journal.pgen.0040014
[78] Monte, E., Tepperman, J.M., Al-Sady, B., Kaczorowski, K.A., Alonso, J.M., Ecker, J.R., Li, X., Zhang, Y., and Quail, P.H. (2004). The phytochrome-interacting transcription factor, PIF3, acts early, se-lectively, and positively in light-induced chloroplast development. Proc Natl Acad Sci U S A 101, 16091-16098 .10.1073/pnas.0407107101
[79] Nagatani, A., Chory, J., and Furuya, M. (1991). Phytochrome B is not detectable in the hy3mutant of Arabidopsis, which is deficient in responding to end-of-day far-red light treatments. Plant Cell Physiol 32, 1119-1112 .
[80] Nagatani, A., Reed, J.W., and Chory, J. (1993). Isolation and initial characterization of Arabidopsismutants that are deficient in phy-tochrome A. Plant Physiol 102, 269-277 .
[81] Neff, M.M., and Chory, J. (1998). Genetic interactions between phy-tochrome A, phytochrome B, and cryptochrome 1 during Arabi-dopsis development. Plant Physiol 118, 27-35 .10.1104/pp.118.1.27
[82] Neff, M.M., and Van Volkenburgh, E. (1994). Light-stimulated coty-ledon expansion in Arabidopsis seedlings (the role of phyto-chrome B). Plant Physiol 104, 1027-1032 .
[83] Ni, M., Tepperman, J.M., and Quail, P.H. (1998). PIF3, a phyto-chrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95, 657-667 .10.1016/S0092-8674(00)81636-0
[84] Oh, E., Kang, H., Yamaguchi, S., Park, J., Lee, D., Kamiya, Y., and Choi, G. (2009). Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell 21, 403-419 .10.1105/tpc.108.064691
[85] Oh, E., Kim, J., Park, E., Kim, J.I., Kang, C., and Choi, G. (2004). PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsisthaliana. Plant Cell 16, 3045-3058 .10.1105/tpc.104.025163
[86] Oh, E., Yamaguchi, S., Hu, J., Yusuke, J., Jung, B., Paik, I., Lee, H.S., Sun, T.P., Kamiya, Y., and Choi, G. (2007). PIL5, a phyto-chrome-interacting bHLH protein, regulates gibberellin respon-siveness by binding directly to the GAIand RGApromoters in Arabidopsisseeds. Plant Cell 19, 1192-1208 .10.1105/tpc.107.050153
[87] Oh, E., Yamaguchi, S., Kamiya, Y., Bae, G., Chung, W.I., and Choi, G. (2006). Light activates the degradation of PIL5 protein to pro-mote seed germination through gibberellin in Arabidopsis. Plant J 47, 124-139 .10.1111/j.1365-313X.2006.02773.x
[88] Ohgishi, M., Saji, K., Okada, K., and Sakai, T. (2004). Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci U S A 101, 2223-2228 .10.1073/pnas.0305984101
[89] Osterlund, M.T., Hardtke, C.S., Wei, N., and Deng, X.W. (2000). Targeted destabilization of HY5 during light-regulated develop-ment of Arabidopsis. Nature 405, 462-466 .10.1038/35013076
[90] Ouyang, X., Li, J., Li, G., Li, B., Chen, B., Shen, H., Huang, X., Mo, X., Wan, X., Lin, R., . (2011). Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel func-tion in Arabidopsisdevelopment. Plant Cell 23, 2514-2535 .10.1105/tpc.111.085126
[91] Oyama, T., Shimura, Y., and Okada, K. (1997). The ArabidopsisHY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11, 2983-2995 .10.1101/gad.11.22.2983
[92] Ozsolak, F., and Milos, P.M. (2011). RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12, 87-98 .10.1038/nrg2934
[93] Parks, B.M., and Quail, P.H. (1993). hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A. plant Cell 5, 39-48 .
[94] Pedmale, U.V., Celaya, R.B., and Liscum, E. (2010). Phototropism: mechanism and outcomes. Arabidopsis Book 8, e0125.
[95] Pfluger, J., and Wagner, D. (2007). Histone modifications and dy-namic regulation of genome accessibility in plants. Curr Opin Plant Biol 10, 645-652 .10.1016/j.pbi.2007.07.013
[96] Quail, P.H. (1991). Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu Rev Genet 25, 389-409 .10.1146/annurev.ge.25.120191.002133
[97] Quail, P.H. (2011). Phytochromes. Curr Biol 20, R504-R507 .10.1016/j.cub.2010.04.014
[98] Rausenberger, J., Tscheuschler, A., Nordmeier, W., Wüst, F., Timmer, J., Sch?fer, E., Fleck, C., and Hiltbrunner, A. (2011). Photoconversion and nuclear trafficking cycles determine phyto-chrome A’s response profile to far-red light. Cell 146, 813-825 .10.1016/j.cell.2011.07.023
[99] Reed, J.W., Nagatani, A., Elich, T.D., Fagan, M., and Chory, J. (1994). Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol 104, 1139-1149 .
[100] Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M., and Chory, J. (1993). Mutations in the gene for the red/far-red light receptor phyto-chrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5, 147-157 .
[101] Rizzini, L., Favory, J.J., Cloix, C., Faggionato, D., O’Hara, A., Kaiserli, E., Baumeister, R., Sch?fer, E., Nagy, F., Jenkins, G.I., . (2011). Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103-106 .10.1126/science.1200660
[102] Schaffer, R., Landgraf, J., Accerbi, M., Simon, V., Larson, M., and Wisman, E. (2001). Microarray analysis of diurnal and cir-cadianregulated genes in Arabidopsis. Plant Cell 13, 113-123 .
[103] Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quan-titative monitoring of gene expression patterns with a comple-mentary DNA microarray. Science 270, 467-470 .10.1126/science.270.5235.467
[104] Sellaro, R., Hoecker, U., Yanovsky, M., Chory, J., and Casal, J.J. (2009). Synergism of red and blue light in the control of Arabidopsis gene expression and development. Curr Biol 19, 1216-1220 .10.1016/j.cub.2009.05.062
[105] Sentandreu, M., Martín, G., González-Schain, N., Leivar, P., Soy, J., Tepperman, J.M., Quail, P.H., and Monte, E. (2011). Functional profiling identifies genes involved in organ-specific branches of the PIF3 regulatory network in Arabidopsis. Plant Cell 23, 3974-3991 .10.1105/tpc.111.088161
[106] Seo, H.S., Watanabe, E., Tokutomi, S., Nagatani, A., and Chua, N.H. (2004). Photoreceptor ubiquitination by COP1 E3 ligase desensi-tizes phytochrome A signaling. Genes Dev 18, 617-622 .10.1101/gad.1187804
[107] Seo, H.S., Yang, J.Y., Ishikawa, M., Bolle, C., Ballesteros, M.L., and Chua, N.H. (2003). LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423, 995-999 .10.1038/nature01696
[108] Servet, C., Conde e Silva, N., and Zhou, D.X. (2010). Histone acetyl-transferase AtGCN5/HAG1 is a versatile regulator of develop-mental and inducible gene expression in Arabidopsis. Mol Plant 3, 670-677 .10.1093/mp/ssq018
[109] Shin, J., Kim, K., Kang, H., Zulfugarov, I.S., Bae, G., Lee, C.H., Lee, D., and Choi, G. (2009). Phytochromes promote seedling light responses by inhibiting four negatively-acting phyto-chrome-interacting factors. Proc Natl Acad Sci U S A 106, 7660-7665 .10.1073/pnas.0812219106
[110] Somers, D.E., Sharrock, R.A., Tepperman, J.M., and Quail, P.H. (1991). The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B. Plant Cell 3, 1263-1274 .
[111] Sullivan, J.A., Shirasu, K., and Deng, X.W. (2003). The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet 4, 948-958 .10.1038/nrg1228
[112] Tepperman, J.M., Hudson, M.E., Khanna, R., Zhu, T., Chang, S.H., Wang, X., and Quail, P.H. (2004). Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J 38, 725-739 .10.1111/j.1365-313X.2004.02084.x
[113] Tepperman, J.M., Hwang, Y.S., and Quail, P.H. (2006). phyA domi-nates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation. Plant J 48, 728-742 .10.1111/j.1365-313X.2006.02914.x
[114] Tepperman, J.M., Zhu, T., Chang, H.S., Wang, X., and Quail, P.H. (2001). Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci U S A 98, 9437-9442 .10.1073/pnas.161300998
[115] Terzaghi, W.B., and Cashmore, A.R. (1995). Light-regulated tran-scription. Annu Rev Plant Physiol Plant Mol Biol 46, 445-474 .10.1146/annurev.pp.46.060195.002305
[116] Ulm, R., Baumann, A., Oravecz, A., Máté, Z., Adám, E., Oakeley, E.J., Sch?fer, E., and Nagy, F. (2004). Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci U S A 101, 1397-1402 .10.1073/pnas.0308044100
[117] Ulm, R., and Nagy, F. (2005). Signalling and gene regulation in re-sponse to ultraviolet light. Curr Opin Plant Biol 8, 477-482 .10.1016/j.pbi.2005.07.004
[118] Wang, H., and Deng, X.W. (2002). Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J 21, 1339-1349 .10.1093/emboj/21.6.1339
[119] Wang, H., and Deng, X.W. (2003). Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci 8, 172-178 .10.1016/S1360-1385(03)00049-9
[120] Wang, H., Ma, L., Habashi, J., Li, J., Zhao, H., and Deng, X.W. (2002). Analysis of far-red light-regulated genome expression profiles of phytochrome A pathway mutants in Arabidopsis. Plant J 32, 723-733 .10.1046/j.1365-313X.2002.01462.x
[121] Wang, H., Ma, L.G., Li, J.M., Zhao, H.Y., and Deng, X.W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294, 154-158 .10.1126/science.1063630
[122] Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolu-tionary tool for transcriptomics. Nat Rev Genet 10, 57-63 .10.1038/nrg2484
[123] Wei, N., and Deng, X.W. (1996). The role of the COP/DET/FUS genes in light control of Arabidopsis cseedling development. Plant Physiol 112, 871-878 .10.1104/pp.112.3.871
[124] Whitelam, G.C., Johnson, E., Peng, J., Carol, P., Anderson, M.L., Cowl, J.S., and Harberd, N.P. (1993). Phytochrome A null mu-tants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5, 757-768 .
[125] Yang, J., Lin, R., Sullivan, J., Hoecker, U., Liu, B., Xu, L., Deng, X.W., and Wang, H. (2005). Light regulates COP1-mediated degrada-tion of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17, 804-821 .10.1105/tpc.104.030205
[126] Yi, C., and Deng, X.W. (2005). COP1- from plant photomorpho-genesis to mammalian tumorigenesis. Trends Cell Biol 15, 618-625 .10.1016/j.tcb.2005.09.007
[127] Yu, X., Liu, H., Klejnot, J., and Lin, C. (2010). The cryptochrome blue light receptors. Arabidopsis Book 8, e0135.
[128] Zhang, H., He, H., Wang, X., Wang, X., Yang, X., Li, L., and Deng, X.W. (2011). Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation. Plant J 65, 346-358 .10.1111/j.1365-313X.2010.04426.x
[129] Zhang, X. (2008). The epigenetic landscape of plants. Science 320, 489-492 .10.1126/science.1153996
AI Summary AI Mindmap
PDF(270 KB)

Accesses

Citations

Detail

Sections
Recommended

/