Comparison of caspase-3 activation in tumor cells upon treatment of chemotherapeutic drugs using capillary electrophoresis

Shuang Sha1,2, Honglin Jin1,2, Xiao Li1,2, Jie Yang1,2, Ruiting Ai3, Jinling Lu1,2()

PDF(486 KB)
PDF(486 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (5) : 392-399. DOI: 10.1007/s13238-012-2008-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparison of caspase-3 activation in tumor cells upon treatment of chemotherapeutic drugs using capillary electrophoresis

  • Shuang Sha1,2, Honglin Jin1,2, Xiao Li1,2, Jie Yang1,2, Ruiting Ai3, Jinling Lu1,2()
Author information +
History +

Abstract

Caspases play important roles in cell apoptosis. Measurement of the dynamics of caspase activation in tumor cells not only facilitates understanding of the molecular mechanisms of apoptosis but also contributes to the development, screening, and evaluation of anticancer drugs that target apoptotic pathways. The fluorescence resonance energy transfer (FRET) technique provides a valuable approach for defining the dynamics of apoptosis with high spatio-temporal resolution. However, FRET generally functions in the single-cell level and becomes ineffective when applied in the high throughput detection of caspase activation. In the current study, a FRET sensor was combined with capillary electrophoresis (CE) to achieve a high throughput method for cellular caspase detection. The FRET-based CE system is composed of a homemade CE system and a laser source for detecting the dynamics of caspase-3 in various cells expressing sensors of caspase-3 that have been treated with anticancer drugs, such as cell cycle-independent drug cisplatin and specific cell cycle drugs camptothecin and etoposide, as well as their combination with tumor necrosis factor (TNF). A positive correlation between the caspase-3 activation velocity and drug concentration was observed when the cells were treated with cisplatin, but cells induced by camptothecin and etoposide did not show any apparent correlation with their concentrations. Moreover, different types of cells presented distinct sensitivities under the same drug treatment, and the combination treatment of TNF and anticancer drugs significantly accelerated the caspase-3 activation process. Its high throughput capability and detection sensitivity make the FRET-based CE system a useful tool for investigating the mechanisms of anticancer drugs and anticancer drug screening.

Keywords

apoptosis / caspase-3 / fluorescence resonance energy transfer (FRET) / capillary electrophoresis (CE)

Cite this article

Download citation ▾
Shuang Sha, Honglin Jin, Xiao Li, Jie Yang, Ruiting Ai, Jinling Lu. Comparison of caspase-3 activation in tumor cells upon treatment of chemotherapeutic drugs using capillary electrophoresis. Prot Cell, 2012, 3(5): 392‒399 https://doi.org/10.1007/s13238-012-2008-7

References

[1] Abbott, B.P., Abbott, R., Acernese, F., Adhikari, R., Ajith, P., Allen, B., Allen, G., Alshourbagy, M., Amin, R.S., Anderson, S.B., ., and the LIGO Scientific Collaboration & Virgo Collaboration. (2009). An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature 460, 990-994 .10.1038/nature08278
[2] Berezovski, M., Li, W.P., Poulter, C.D., and Krylov, S.N. (2002). Measuring the activity of farnesyltransferase by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 23, 3398-3403 .10.1002/1522-2683(200210)23:19<3398::AID-ELPS3398>3.0.CO;2-Y
[3] Bergeron, S., Beauchemin, M., and Bertrand, R. (2004). Camptothecin- and etoposide-induced apoptosis in human leukemia cells is independent of cell death receptor-3 and-4 aggregation but accelerates tumor necrosis factor-related apoptosis-inducing ligand-mediated cell death. Mol Cancer Ther 3, 1659-1669 .
[4] Burton, E.R., and Libutti, S.K. (2009). Targeting TNF-alpha for cancer therapy. J Biol 8, 85.10.1186/jbiol189
[5] Chen, A.K., and Tsourka, A. (2009). Imaging RNA in living cells with molecular beacons: current perspectives and challenges. J Innovative Opt Health Sci 2, 315-324 .10.1142/S179354580900070X
[6] Chen, A.Y., and Liu, L.F. (1994). DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 34, 191-218 .10.1146/annurev.pa.34.040194.001203
[7] de Jonge, M.J., Kaye, S., Verweij, J., Brock, C., Reade, S., Scurr, M., van Doorn, L., Verheij, C., Loos, W., Brindley, C., . (2004). Phase I and pharmacokinetic study of XR11576, an oral topoisomerase I and II inhibitor, administered on days 1-5 of a 3-weekly cycle in patients with advanced solid tumours. Br J Cancer 91, 1459-1465 .
[8] Hara, K., Okamoto, M., Aki, T., Yagita, H., Tanaka, H., Mizukami, Y., Nakamura, H., Tomoda, A., Hamasaki, N., and Kang, D. (2005). Synergistic enhancement of TRAIL- and tumor necrosis factor alpha-induced cell death by a phenoxazine derivative. Mol Cancer Ther 4, 1121-1127 .10.1158/1535-7163.MCT-05-0067
[9] Hsu, J.L., Chiang, P.C., and Guh, J.H. (2009). Tunicamycin induces resistance to camptothecin and etoposide in human hepatocellular carcinoma cells: role of cell-cycle arrest and GRP78. Naunyn Schmiedebergs Arch Pharmacol 380, 373-382 .10.1007/s00210-009-0453-5
[10] Johnstone, R.W., Ruefli, A.A., and Lowe, S.W. (2002). Apoptosis: a link between cancer genetics and chemotherapy. Cell 108, 153-164 .10.1016/S0092-8674(02)00625-6
[11] Jones, J., Heim, R., Hare, E., Stack, J., and Pollok, B.A. (2000). Development and application of a GFP-FRET intracellular cas pase assay for drug screening. J Biomol Screen 5, 307-318 .10.1177/108705710000500502
[12] Joseph, J., Seervi, M., Sobhan, P.K., and Retnabai, S.T. (2011). High throughput ratio imaging to profile caspase activity: potential application in multiparameter high content apoptosis analysis and drug screening. PLoS One 6, e20114.10.1371/journal.pone.0020114
[13] Lin, J., Zhang, Z., Zeng, S., Zhou, S., Liu, B.F., Liu, Q., Yang, J., and Luo, Q. (2006). TRAIL-induced apoptosis proceeding from caspase-3-dependent and-independent pathways in distinct HeLa cells. Biochem Biophys Res Commun 346, 1136-1141 .10.1016/j.bbrc.2006.05.209
[14] Locke, S., and Figeys, D. (2000). Techniques for the optimization of proteomic strategies based on head column stacking capillary electrophoresis. Anal Chem 72, 2684-2689 .10.1021/ac0003293
[15] Luo, K.Q., Yu, V.C., Pu, Y., and Chang, D.C. (2003). Measuring dynamics of caspase-8 activation in a single living HeLa cell during TNFalpha-induced apoptosis. Biochem Biophys Res Commun 304, 217-222 .10.1016/S0006-291X(03)00559-X
[16] Mahajan, N.P., Harrison-Shostak, D.C., Michaux, J., and Herman, B. (1999). Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis. Chem Biol 6, 401-409 .10.1016/S1074-5521(99)80051-9
[17] Namura, S., Zhu, J., Fink, K., Endres, M., Srinivasan, A., Tomaselli, K.J., Yuan, J., and Moskowitz, M.A. (1998). Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18, 3659-3668 .
[18] Neefjes, J., and Dantuma, N.P. (2004). Fluorescent probes for proteolysis: tools for drug discovery. Nat Rev Drug Discov 3, 58-69 .10.1038/nrd1282
[19] Postiglione, I., Chiaviello, A., and Palumbo, G. (2011). Enhancing Photodynamyc Therapy Efficacy by Combination Therapy: Dated, Current and Oncoming Strategies. Cancers 3, 2597-2629 .10.3390/cancers3022597
[20] Reinhold, W.C., Kouros-Mehr, H., Kohn, K.W., Maunakea, A.K., Lababidi, S., Roschke, A., Stover, K., Alexander, J., Pantazis, P., Miller, L., . (2003). Apoptotic susceptibility of cancer cells selected for camptothecin resistance: gene expression profiling, functional analysis, and molecular interaction mapping. Cancer Res 63, 1000-1011 .
[21] Szlosarek, P.W., and Balkwill, F.R. (2003). Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 4, 565-573 .10.1016/S1470-2045(03)01196-3
[22] Tsuruo, T., Naito, M., Tomida, A., Fujita, N., Mashima, T., Sakamoto, H., and Haga, N. (2003). Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci 94, 15-21 .10.1111/j.1349-7006.2003.tb01345.x
[23] Tyas, L., Brophy, V.A., Pope, A., Rivett, A.J., and Tavaré, J.M. (2000). Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer. EMBO Rep 1, 266-270 .10.1093/embo-reports/kvd050
[24] Wu, Y.X., Xing, D., Luo, S.M., Tang, Y.H., and Chen, Q. (2006). Detection of caspase-3 activation in single cells by fluorescence resonance energy transfer during photodynamic therapy induced apoptosis. Cancer Lett 235, 239-247 .10.1016/j.canlet.2005.04.036
[25] Yang, J., Zhang, Z., Lin, J., Lu, J., Liu, B.F., Zeng, S., and Luo, Q. (2007). Detection of MMP activity in living cells by a genetically encoded surface-displayed FRET sensor. Biochim Biophys Acta 1773, 400-407 .10.1016/j.bbamcr.2006.11.002
[26] Yao, X., Panichpisal, K., Kurtzman, N., and Nugent, K. (2007). Cisplatin nephrotoxicity: a review. Am J Med Sci 334, 115-124 .10.1097/MAJ.0b013e31812dfe1e
[27] Zarrine-Afsar, A., and Krylov, S.N. (2003). Use of capillary electrophoresis and endogenous fluorescent substrate to monitor intracellular activation of protein kinase A. Anal Chem 75, 3720-3724 .10.1021/ac034463+
[28] Zhang, Z., Lin, J., Chu, J., Ma, Y., Zeng, S., and Luo, Q. (2008a). Activation of caspase-3 noninvolved in the bystander effect of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system. J Biomed Opt 13, 031209.10.1117/1.2937830
[29] Zhang, Z., Yang, J., Lu, J., Lin, J., Zeng, S., and Luo, Q. (2008b). Fluorescence imaging to assess the matrix metalloproteinase activity and its inhibitor in vivo. J Biomed Opt 13, 011006.10.1117/1.2830659
[30] Zhou, S., Lin, J., Du, W., Zhang, Z., Luo, Q., Liu, B.F., and Dai, Y. (2006a). Characterization of proteinase activation dynamics by capillary electrophoresis conjugating with fluorescent protein-based probe. J Chromatogr B Analyt Technol Biomed Life Sci 844, 158-162 .10.1016/j.jchromb.2006.06.038
[31] Zhou, S.X., Lin, J.Q., Du, W., Zhang, Z.H., Luo, Q.M., Liu, B.F., and Dai, Y.Q. (2006b). Monitoring of proteinase activation in cell apoptosis by capillary electrophoresis with bioengineered fluorescent probe. Anal Chim Acta 569, 176-181 .10.1016/j.aca.2006.03.088
[32] Zhu, L., Liu, T.C.-Y., Wu, M., Yuan, J.-Q., and Chen, T.-S. (2009). Extraocular Cellular Phototransduction. J Innovative Opt Health Sci 2, 93-100 .10.1142/S1793545809000358
[33] Zuryn, A., Grzanka, A., Stepien, A., Grzanka, D., Debski, R., and Smolinski, D. (2007). Expression of cyclin A in human leukemia cell line HL-60 following treatment with doxorubicin and etoposide: the potential involvement of cyclin A in apoptosis. Oncol Rep 17, 1013-1019 .
AI Summary AI Mindmap
PDF(486 KB)

Accesses

Citations

Detail

Sections
Recommended

/