Emerging role of ER quality control in plant cell signal perception

Hong-Ju Li, Wei-Cai Yang()

PDF(273 KB)
PDF(273 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (1) : 10-16. DOI: 10.1007/s13238-012-2004-y
MINI-REVIEW
MINI-REVIEW

Emerging role of ER quality control in plant cell signal perception

  • Hong-Ju Li, Wei-Cai Yang()
Author information +
History +

Abstract

The endoplasmic reticulum quality control (ER-QC) is a conserved mechanism in surveillance of secreted signaling factors during cell-to-cell communication in eukaryotes. Recent data show that the ER-QC plays important roles in diverse cell-to-cell signaling processes during immune response, vegetative and reproductive development in plants. Pollen tube guidance is a precisely guided cell-cell communication process between the male and female gametophytes during plant reproduction. Recently, the female signal has been identified as small secreted peptides, but how the pollen tube responds to this signal is still unclear. In this review, we intend to summarize the role of ER-QC in plants and discuss the recent advances regarding our understanding of the mechanism of pollen tube response to the female signals.

Keywords

cell-to-cell communication / pollen tube guidance / gametophyte / ER quality control

Cite this article

Download citation ▾
Hong-Ju Li, Wei-Cai Yang. Emerging role of ER quality control in plant cell signal perception. Prot Cell, 2012, 3(1): 10‒16 https://doi.org/10.1007/s13238-012-2004-y

References

[1] Anelli, T., Alessio, M., Bachi, A., Bergamelli, L., Bertoli, G., Camerini, S., Mezghrani, A., Ruffato, E., Simmen, T., and Sitia, R. (2003). Thiol-mediated protein retention in the endoplasmic reticulum: the role of ERp44. EMBO J 22, 5015–5022 14517240.
[2] Anelli, T., and Sitia, R. (2008). Protein quality control in the early secretory pathway. EMBO J 27, 315–327 18216874.
[3] Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60, 379–406 19400727.
[4] Buck, T.M., Wright, C.M., and Brodsky, J.L. (2007). The activities and function of molecular chaperones in the endoplasmic reticulum. Semin Cell Dev Biol 18, 751–761 17964199.
[5] Caplan, J.L., Zhu, X., Mamillapalli, P., Marathe, R., Anandalakshmi, R., and Dinesh-Kumar, S.P. (2009). Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in plants. Cell Host Microbe 6, 457–469 19917500.
[6] Christensen, A., Svensson, K., Thelin, L., Zhang, W., Tintor, N., Prins, D., Funke, N., Michalak, M., Schulze-Lefert, P., Saijo, Y., (2010). Higher plant calreticulins have acquired specialized functions in Arabidopsis. PLoS ONE 5, e11342.
[7] Cole, R.A., and Fowler, J.E. (2006). Polarized growth: maintaining focus on the tip. Curr Opin Plant Biol 9, 579–588 .
[8] Diévart, A., and Clark, S.E. (2004). LRR-containing receptors regulating plant development and defense. Development 131, 251–261 14701679.
[9] Dresselhaus, T., and Márton, M.L. (2009). Micropylar pollen tube guidance and burst: adapted from defense mechanisms? Curr Opin Plant Biol 12, 773–780 19896414.
[10] Ellgaard, L., and Helenius, A. (2001). ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 13, 431–437 11454449.
[11] Fleck, M.W. (2006). Glutamate receptors and endoplasmic reticulum quality control: looking beneath the surface. Neuroscientist 12, 232–244 16684968.
[12] Frietsch, S., Wang, Y.F., Sladek, C., Poulsen, L.R., Romanowsky, S.M., Schroeder, J.I., and Harper, J.F. (2007). A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci U S A 104, 14531–14536 17726111.
[13] Gómez-Gómez, L., and Boller, T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5, 1003–1011 10911994.
[14] Hong, Z., Jin, H., Fitchette, A.C., Xia, Y., Monk, A.M., Faye, L., and Li, J. (2009). Mutations of an α1,6 mannosyltransferase inhibit endoplasmic reticulum-associated degradation of defective brassinosteroid receptors in Arabidopsis. Plant Cell 21, 3792–3802 20023196.
[15] Hong, Z., Jin, H., Tzfira, T., and Li, J. (2008). Multiple mechanism-mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis. Plant Cell 20, 3418–3429 19060110.
[16] Hülskamp, M., Schneitz, K., and Pruitt, R.E. (1995). Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7, 57–64 12242351.
[17] Ishiguro, S., Watanabe, Y., Ito, N., Nonaka, H., Takeda, N., Sakai, T., Kanaya, H., and Okada, K. (2002). SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO J 21, 898–908 11867518.
[18] Jeworutzki, E., Roelfsema, M.R., Anschütz, U., Krol, E., Elzenga, J.T., Felix, G., Boller, T., Hedrich, R., and Becker, D. (2010). Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca-associated opening of plasma membrane anion channels. Plant J 62, 367–378 20113440.
[19] Jin, H., Hong, Z., Su, W., and Li, J. (2009). A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum. Proc Natl Acad Sci USA 106, 15973–15978 19717464.
[20] Jin, H., Yan, Z., Nam, K.H., and Li, J. (2007). Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol Cell 26, 821–830 17588517.
[21] Jin, Y., Awad, W., Petrova, K., and Hendershot, L.M. (2008). Regulated release of ERdj3 from unfolded proteins by BiP. EMBO J 27, 2873–2882 18923428.
[22] Koiwa, H., Li, F., McCully, M.G., Mendoza, I., Koizumi, N., Manabe, Y., Nakagawa, Y., Zhu, J., Rus, A., Pardo, J.M., (2003). The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. Plant Cell 15, 2273–2284 12972670.
[23] Li, H.J., Xue, Y., Jia, D.J., Wang, T., Hi, D.Q., Liu, J., Cui, F., Xie, Q., Ye, D., and Yang, W.C. (2011). POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. Plant Cell 23, 3288–3302 21954464.
[24] Li, J., and Chory, J. (1997). A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90, 929–938 9298904.
[25] Li, J., Zhao-Hui, C., Batoux, M., Nekrasov, V., Roux, M., Chinchilla, D., Zipfel, C., and Jones, J.D. (2009). Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc Natl Acad Sci U S A 106, 15973–15978 19717464.
[26] Lu, X., Tintor, N., Mentzel, T., Kombrink, E., Boller, T., Robatzek, S., Schulze-Lefert, P., and Saijo, Y. (2009). Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele. Proc Natl Acad Sci U S A 106, 22522–22527 20007779.
[27] Lu, Y., Chanroj, S., Zulkifli, L., Johnson, M.A., Uozumi, N., Cheung, A., and Sze, H. (2011). Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. Plant Cell 23, 81–93 21239645.
[28] Malh?, R., and Trewavas, A.J. (1996). Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8, 1935–1949 .
[29] Márton, M.L., Cordts, S., Broadhvest, J., and Dresselhaus, T. (2005). Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307, 573–576 15681383.
[30] Márton, M.L., and Dresselhaus, T. (2010). Female gametophyte-controlled pollen tube guidance. Biochem Soc Trans 38, 627–630 20298233.
[31] Mei, L., and Xiong, W.C. (2003). Two birds with one stone: a novel motif for ACh receptor assembly quality control. Trends Neurosci 26, 178–181 12689766.
[32] Michard, E., Lima, P.T., Borges, F., Silva, A.C., Portes, M.T., Carvalho, J.E., Gilliham, M., Liu, L.H., Obermeyer, G., and Feijó, J.A. (2011). Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332, 434–437 21415319.
[33] Nakamura, K., Zuppini, A., Arnaudeau, S., Lynch, J., Ahsan, I., Krause, R., Papp, S., De Smedt, H., Parys, J.B., Muller-Esterl, W., (2001). Functional specialization of calreticulin domains. J Cell Biol 154, 961–972 11524434.
[34] Nekrasov, V., Li, J., Batoux, M., Roux, M., Chu, Z.H., Lacombe, S., Rougon, A., Bittel, P., Kiss-Papp, M., Chinchilla, D., (2009). Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO J 28, 3428–3438 19763086.
[35] Okuda, S., Tsutsui, H., Shiina, K., Sprunck, S., Takeuchi, H., Yui, R., Kasahara, R.D., Hamamura, Y., Mizukami, A., Susaki, D., (2009). Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458, 357–361 19295610.
[36] Park, C.J., Bart, R., Chern, M., Canlas, P.E., Bai, W., and Ronald, P.C. (2010). Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLoS One 5, e926220174657.
[37] Randow, F., and Seed, B. (2001). Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nat Cell Biol 3, 891–896 11584270.
[38] Saijo, Y. (2010). ER quality control of immune receptors and regulators in plants. Cell Microbiol 12, 716–724 20408850.
[39] Saijo, Y., Tintor, N., Lu, X., Rauf, P., Pajerowska-Mukhtar, K., H?weker, H., Dong, X., Robatzek, S., and Schulze-Lefert, P. (2009). Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J 28, 3439–3449 19763087.
[40] Schott, A., Ravaud, S., Keller, S., Radzimanowski, J., Viotti, C., Hillmer, S., Sinning, I., and Strahl, S. (2010). Arabidopsis stromal-derived Factor2 (SDF2) is a crucial target of the unfolded protein response in the endoplasmic reticulum. J Biol Chem 285, 18113–18121 20378538.
[41] Torii, K.U. (2004). Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol 234, 1–46 15066372.
[42] Vembar, S.S., and Brodsky, J.L. (2008). One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9, 944–957 19002207.
[43] Wanamaker, C.P., and Green, W.N. (2007). Endoplasmic reticulum chaperones stabilize nicotinic receptor subunits and regulate receptor assembly. J Biol Chem 282, 31113–31123 17728248.
[44] Wang, H., Boavida, L.C., Ron, M., and McCormick, S. (2008). Truncation of a protein disulfide isomerase, PDIL2-1, delays embryo sac maturation and disrupts pollen tube guidance in Arabidopsis thaliana. Plant Cell 20, 3300–3311 19050167.
[45] Wang, J.M., Zhang, L., Yao, Y., Viroonchatapan, N., Rothe, E., and Wang, Z.Z. (2002). A transmembrane motif governs the surface trafficking of nicotinic acetylcholine receptors. Nat Neurosci 5, 963–970 12219096.
[46] Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749–760 16713565.
AI Summary AI Mindmap
PDF(273 KB)

Accesses

Citations

Detail

Sections
Recommended

/