A novel xeno-free and feeder-cell-free system for human pluripotent stem cell culture

Qihui Wang1,2, Xiaoning Mou1,2, Henghua Cao1, Qingzhang Meng1, Yanni Ma1, Pengcheng Han1,2, Junjie Jiang1,2, Hao Zhang3, Yue Ma1()

PDF(779 KB)
PDF(779 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (1) : 51-59. DOI: 10.1007/s13238-012-2002-0
RESEARCH ARTICLE
RESEARCH ARTICLE

A novel xeno-free and feeder-cell-free system for human pluripotent stem cell culture

  • Qihui Wang1,2, Xiaoning Mou1,2, Henghua Cao1, Qingzhang Meng1, Yanni Ma1, Pengcheng Han1,2, Junjie Jiang1,2, Hao Zhang3, Yue Ma1()
Author information +
History +

Abstract

While human induced pluripotent stem cells (hiPSCs) have promising applications in regenerative medicine, most of the hiPSC lines available today are not suitable for clinical applications due to contamination with non-human materials, such as sialic acid, and potential pathogens from animal-product-containing cell culture systems. Although several xeno-free cell culture systems have been established recently, their use of human fibroblasts as feeders reduces the clinical potential of hiPSCs due to batch-to-batch variation in the feeders and time-consuming preparation processes. In this study, we have developed a xeno-free and feeder-cell-free human embryonic stem cell (hESC)/hiPSC culture system using human plasma and human placenta extracts. The system maintains the self-renewing capacity and pluripotency of hESCs for more than 40 passages. Human iPSCs were also derived from human dermal fibroblasts using this culture system by overexpressing three transcription factors—Oct4, Sox2 and Nanog. The culture system developed here is inexpensive and suitable for large scale production.

Keywords

human embryonic stem cells / human induced pluripotent stem cells / reprogramming / xeno-free and feeder-cell-free culture system

Cite this article

Download citation ▾
Qihui Wang, Xiaoning Mou, Henghua Cao, Qingzhang Meng, Yanni Ma, Pengcheng Han, Junjie Jiang, Hao Zhang, Yue Ma. A novel xeno-free and feeder-cell-free system for human pluripotent stem cell culture. Prot Cell, 2012, 3(1): 51‒59 https://doi.org/10.1007/s13238-012-2002-0

References

[1] Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G., (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26, 1276-1284 10.1038/nbt.1503.
[2] Amit, M., Shariki, C., Margulets, V., and Itskovitz-Eldor, J. (2004). Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70, 837-845 10.1095/biolreprod.103.021147.
[3] Beattie, G.M., Lopez, A.D., Bucay, N., Hinton, A., Firpo, M.T., King, C.C., and Hayek, A. (2005). Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23, 489-495 10.1634/stemcells.2004-0279.
[4] Braam, S.R., Zeinstra, L., Litjens, S., Ward-van Oostwaard, D., van den Brink, S., van Laake, L., Lebrin, F., Kats, P., Hochstenbach, R., Passier, R., (2008). Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26, 2257-2265 10.1634/stemcells.2008-0291.
[5] Draper, J.S., Moore, H.D., Ruban, L.N., Gokhale, P.J., and Andrews, P.W. (2004). Culture and characterization of human embryonic stem cells. Stem Cells Dev 13, 325-336 10.1089/scd.2004.13.325.
[6] Ghodsizadeh, A., Taei, A., Totonchi, M., Seifinejad, A., Gourabi, H., Pournasr, B., Aghdami, N., Malekzadeh, R., Almadani, N., Salekdeh, G.H., (2010). Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev 6, 622-632 10.1007/s12015-010-9189-3.
[7] Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.C., Townes, T.M., (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920-1923 10.1126/science.1152092.
[8] Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., and Melton, D.A. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26, 1269-1275 10.1038/nbt.1502.
[9] Kibbey, M.C. (1994). Maintenance of the EHS sarcoma and Matrigel preparation. Methods Cell Sci 16, 227-230 .
[10] Lee, G., Papapetrou, E.P., Kim, H., Chambers, S.M., Tomishima, M.J., Fasano, C.A., Ganat, Y.M., Menon, J., Shimizu, F., Viale, A., (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402-406 10.1038/nature08320.
[11] Li, Z.K., and Zhou, Q. (2010). Cellular models for disease exploring and drug screening. Protein Cell 1, 355-362 10.1007/s13238-010-0027-9.
[12] Ludwig, T.E., Levenstein, M.E., Jones, J.M., Berggren, W.T., Mitchen, E.R., Frane, J.L., Crandall, L.J., Daigh, C.A., Conard, K.R., Piekarczyk, M.S., (2006). Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24, 185-187 10.1038/nbt1177.
[13] Ma, Y., Ramezani, A., Lewis, R., Hawley, R.G., and Thomson, J.A. (2003). High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells 21, 111-117 10.1634/stemcells.21-1-111.
[14] Martin, M.J., Muotri, A., Gage, F., and Varki, A. (2005). Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11, 228-232 10.1038/nm1181.
[15] Park, I.H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M.W., Cowan, C., Hochedlinger, K., and Daley, G.Q. (2008). Disease-specific induced pluripotent stem cells. Cell 134, 877-886 10.1016/j.cell.2008.07.041.
[16] Somers, A., Jean, J.C., Sommer, C.A., Omari, A., Ford, C.C., Mills, J.A., Ying, L., Sommer, A.G., Jean, J.M., Smith, B.W., (2010). Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28, 1728-1740 10.1002/stem.495.
[17] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872 10.1016/j.cell.2007.11.019.
[18] Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 10.1126/science.282.5391.1145.
[19] Wang, P., and Na, J. (2011). Mechanism and methods to induce pluripotency. Protein Cell 2, 792-799 10.1007/s13238-011-1107-1.
[20] Wernig, M., Zhao, J.P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O., and Jaenisch, R. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci USA 105, 5856-5861 10.1073/pnas.0801677105.
[21] Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., and Carpenter, M.K. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19, 971-974 10.1038/nbt1001-971.
[22] Xu, D., Alipio, Z., Fink, L.M., Adcock, D.M., Yang, J., Ward, D.C., and Ma, Y. (2009). Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci USA 106, 808-813 10.1073/pnas.0812090106.
[23] Yamanaka, S. (2008). Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond B Biol Sci 363, 2079-2087 10.1098/rstb.2008.2261.
[24] Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920 10.1126/science.1151526.
[25] Zhang, X., and Gao, G.F. (2010). Revival of gene therapy. Protein Cell 1, 107-108 10.1007/s13238-010-0026-x.
AI Summary AI Mindmap
PDF(779 KB)

Accesses

Citations

Detail

Sections
Recommended

/