[1] Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G.,
(2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes.
Nat Biotechnol 26, 1276-1284
10.1038/nbt.1503.
[2] Amit, M., Shariki, C., Margulets, V., and Itskovitz-Eldor, J. (2004). Feeder layer- and serum-free culture of human embryonic stem cells.
Biol Reprod 70, 837-845
10.1095/biolreprod.103.021147.
[3] Beattie, G.M., Lopez, A.D., Bucay, N., Hinton, A., Firpo, M.T., King, C.C., and Hayek, A. (2005). Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers.
Stem Cells 23, 489-495
10.1634/stemcells.2004-0279.
[4] Braam, S.R., Zeinstra, L., Litjens, S., Ward-van Oostwaard, D., van den Brink, S., van Laake, L., Lebrin, F., Kats, P., Hochstenbach, R., Passier, R.,
(2008). Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin.
Stem Cells 26, 2257-2265
10.1634/stemcells.2008-0291.
[5] Draper, J.S., Moore, H.D., Ruban, L.N., Gokhale, P.J., and Andrews, P.W. (2004). Culture and characterization of human embryonic stem cells.
Stem Cells Dev 13, 325-336
10.1089/scd.2004.13.325.
[6] Ghodsizadeh, A., Taei, A., Totonchi, M., Seifinejad, A., Gourabi, H., Pournasr, B., Aghdami, N., Malekzadeh, R., Almadani, N., Salekdeh, G.H.,
(2010). Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells.
Stem Cell Rev 6, 622-632
10.1007/s12015-010-9189-3.
[7] Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.C., Townes, T.M.,
(2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin.
Science 318, 1920-1923
10.1126/science.1152092.
[8] Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., and Melton, D.A. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2.
Nat Biotechnol 26, 1269-1275
10.1038/nbt.1502.
[9] Kibbey, M.C. (1994). Maintenance of the EHS sarcoma and Matrigel preparation.
Methods Cell Sci 16, 227-230 .
[10] Lee, G., Papapetrou, E.P., Kim, H., Chambers, S.M., Tomishima, M.J., Fasano, C.A., Ganat, Y.M., Menon, J., Shimizu, F., Viale, A.,
(2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs.
Nature 461, 402-406
10.1038/nature08320.
[11] Li, Z.K., and Zhou, Q. (2010). Cellular models for disease exploring and drug screening.
Protein Cell 1, 355-362
10.1007/s13238-010-0027-9.
[12] Ludwig, T.E., Levenstein, M.E., Jones, J.M., Berggren, W.T., Mitchen, E.R., Frane, J.L., Crandall, L.J., Daigh, C.A., Conard, K.R., Piekarczyk, M.S.,
(2006). Derivation of human embryonic stem cells in defined conditions.
Nat Biotechnol 24, 185-187
10.1038/nbt1177.
[13] Ma, Y., Ramezani, A., Lewis, R., Hawley, R.G., and Thomson, J.A. (2003). High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors.
Stem Cells 21, 111-117
10.1634/stemcells.21-1-111.
[14] Martin, M.J., Muotri, A., Gage, F., and Varki, A. (2005). Human embryonic stem cells express an immunogenic nonhuman sialic acid.
Nat Med 11, 228-232
10.1038/nm1181.
[15] Park, I.H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M.W., Cowan, C., Hochedlinger, K., and Daley, G.Q. (2008). Disease-specific induced pluripotent stem cells.
Cell 134, 877-886
10.1016/j.cell.2008.07.041.
[16] Somers, A., Jean, J.C., Sommer, C.A., Omari, A., Ford, C.C., Mills, J.A., Ying, L., Sommer, A.G., Jean, J.M., Smith, B.W.,
(2010). Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette.
Stem Cells 28, 1728-1740
10.1002/stem.495.
[17] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
Cell 131, 861-872
10.1016/j.cell.2007.11.019.
[18] Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts.
Science 282, 1145-1147
10.1126/science.282.5391.1145.
[19] Wang, P., and Na, J. (2011). Mechanism and methods to induce pluripotency.
Protein Cell 2, 792-799
10.1007/s13238-011-1107-1.
[20] Wernig, M., Zhao, J.P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O., and Jaenisch, R. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease.
Proc Natl Acad Sci USA 105, 5856-5861
10.1073/pnas.0801677105.
[21] Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., and Carpenter, M.K. (2001). Feeder-free growth of undifferentiated human embryonic stem cells.
Nat Biotechnol 19, 971-974
10.1038/nbt1001-971.
[22] Xu, D., Alipio, Z., Fink, L.M., Adcock, D.M., Yang, J., Ward, D.C., and Ma, Y. (2009). Phenotypic correction of murine hemophilia A using an iPS cell-based therapy.
Proc Natl Acad Sci USA 106, 808-813
10.1073/pnas.0812090106.
[23] Yamanaka, S. (2008). Pluripotency and nuclear reprogramming.
Philos Trans R Soc Lond B Biol Sci 363, 2079-2087
10.1098/rstb.2008.2261.
[24] Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R.,
(2007). Induced pluripotent stem cell lines derived from human somatic cells.
Science 318, 1917-1920
10.1126/science.1151526.
[25] Zhang, X., and Gao, G.F. (2010). Revival of gene therapy.
Protein Cell 1, 107-108
10.1007/s13238-010-0026-x.