Functional regulation of monocyte-derived dendritic cells by microRNAs

Yifan Zhan1,2(), Li Wu3

PDF(380 KB)
PDF(380 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (7) : 497-507. DOI: 10.1007/s13238-012-0042-0
REVIEW
REVIEW

Functional regulation of monocyte-derived dendritic cells by microRNAs

  • Yifan Zhan1,2(), Li Wu3
Author information +
History +

Abstract

Dendritic cells (DCs) as a rare type of leukocytes play an important role in bridging the innate and adaptive immune system. A subset of DCs, monocyte-derived dendritic cells (moDCs), exists in very low numbers at steady state but become abundant in inflammatory states. These inflammation-associated DCs are potent producers of pro-inflammatory cytokines and potent inducers of T helper differentiation. They behave as a “double-edge” sword so that they not only mediate protective immunity but also immuno-pathology. It is still incompletely understood how their function is regulated. Emerging evidence indicates that microRNAs (miRNAs), as a new class of gene regulators, potently regulate the function of moDCs. Here we summarize recent progress in this area.

Keywords

dendritic cells / microRNA / function

Cite this article

Download citation ▾
Yifan Zhan, Li Wu. Functional regulation of monocyte-derived dendritic cells by microRNAs. Prot Cell, 2012, 3(7): 497‒507 https://doi.org/10.1007/s13238-012-0042-0

References

[1] Aldridge, J.R., Jr., Moseley, C.E., Boltz, D.A., Negovetich, N.J., Reynolds, C., Franks, J., Brown, S.A., Doherty, P.C., Webster, R.G., and Thomas, P.G. (2009). TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc Natl Acad Sci U S A 106, 5306-5311 .10.1073/pnas.0900655106
[2] Aliberti, J., Schulz, O., Pennington, D.J., Tsujimura, H., Reis e Sousa, C., Ozato, K., and Sher, A. (2003). Essential role for ICSBP in the in vivo development of murine CD8alpha+ dendritic cells. Blood 101, 305-310 .10.1182/blood-2002-04-1088
[3] Asselin-Paturel, C., Boonstra, A., Dalod, M., Durand, I., Yessaad, N., Dezutter-Dambuyant, C., Vicari, A., O'Garra, A., Biron, C., Briere, F.,.(2001). Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2, 1144-1150 .10.1038/ni736
[4] Bedoui, S., Whitney, P.G., Waithman, J., Eidsmo, L., Wakim, L., Caminschi, I., Allan, R.S., Wojtasiak, M., Shortman, K., Carbone, F.R.,.(2009). Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 10, 488-495 .10.1038/ni.1724
[5] Bogunovic, M., Ginhoux, F., Helft, J., Shang, L., Hashimoto, D., Greter, M., Liu, K., Jakubzick, C., Ingersoll, M.A., Leboeuf, M.,.(2009). Origin of the lamina propria dendritic cell network. Immunity 31, 513-525 .10.1016/j.immuni.2009.08.010
[6] Campbell, I.K., van Nieuwenhuijze, A., Segura, E., O'Donnell, K., Coghill, E., Hommel, M., Gerondakis, S., Villadangos, J.A., and Wicks, I.P. (2011). Differentiation of inflammatory dendritic cells is mediated by NF-{kappa}B1-dependent GM-CSF production in CD4 T cells. J Immunol 186, 5468-5477 .10.4049/jimmunol.1002923
[7] Carotta, S., Dakic, A., D'Amico, A., Pang, S.H., Greig, K.T., Nutt, S.L., and Wu, L. (2010). The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32, 628-641 .10.1016/j.immuni.2010.05.005
[8] Cekaite, L., Clancy, T., and Sioud, M. (2010). Increased miR-21 expression during human monocyte differentiation into DCs. Front Biosci (Elite Ed) 2, 818-828 .10.2741/E143
[9] Ceppi, M., Pereira, P.M., Dunand-Sauthier, I., Barras, E., Reith, W., Santos, M.A., and Pierre, P.. (2009). MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocytederived dendritic cells. Proc Natl Acad Sci U S A 106, 2735-2740 .10.1073/pnas.0811073106
[10] Chen, C.Z., Li, L., Lodish, H.F., and Bartel, D.P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86 .10.1126/science.1091903
[11] Chen, T., Li, Z., Jing, T., Zhu, W., Ge, J., Zheng, X., Pan, X., Yan, H., and Zhu, J. (2011a). MicroRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells. FEBS Lett 585, 567-573 .10.1016/j.febslet.2011.01.010
[12] Chen, T., Li, Z., Tu, J., Zhu, W., Ge, J., Zheng, X., Yang, L., Pan, X., Yan, H., and Zhu, J. (2011b). MicroRNA-29a regulates pro-inflammatory cytokine secretion and scavenger receptor expression by targeting LPL in oxLDL-stimulated dendritic cells. FEBS Lett 585, 657-663 .10.1016/j.febslet.2011.01.027
[13] Chen, T., Yan, H., Li, Z., Jing, T., Zhu, W., Ge, J., Zheng, X., Pan, X., and Zhu, J. (2011c). MicroRNA-155 regulates lipid uptake, adhesion/chemokine marker secretion and SCG2 expression in oxLDL-stimulated dendritic cells/macrophages. Int J Cardiol 147, 446-447 .10.1016/j.ijcard.2010.10.133
[14] Cheong, C., Matos, I., Choi, J.H., Dandamudi, D.B., Shrestha, E., Longhi, M.P., Jeffrey, K.L., Anthony, R.M., Kluger, C., Nchinda, G.,.(2010). Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell 143, 416-429 .10.1016/j.cell.2010.09.039
[15] Chong, M.M., Rasmussen, J.P., Rudensky, A.Y., and Littman, D.R. (2008). The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med 205, 2005-2017 .10.1084/jem.20081219
[16] den Haan, J.M., Lehar, S.M., and Bevan, M.J. (2000). CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192, 1685-1696 .10.1084/jem.192.12.1685
[17] Dominguez, P.M., and Ardavin, C. (2010). Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev 234, 90-104 .10.1111/j.0105-2896.2009.00876.x
[18] Du, J., Wang, J., Tan, G., Cai, Z., Zhang, L., Tang, B., and Wang, Z. (2012). Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Med Oncol . (In press)10.1007/s12032-012-0175-2
[19] Dunand-Sauthier, I., Santiago-Raber, M.L., Capponi, L., Vejnar, C.E., Schaad, O., Irla, M., Seguin-Estevez, Q., Descombes, P., Zdobnov, E.M., Acha-Orbea, H.,.(2011). Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function. Blood 117, 4490-4500 .10.1182/blood-2010-09-308064
[20] Edelson, B.T., Bradstreet, T.R., Hildner, K., Carrero, J.A., Frederick, K.E., Kc, W., Belizaire, R., Aoshi, T., Schreiber, R.D., Miller, M.J.,.(2011). CD8alpha(+) dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 35, 236-248 .10.1016/j.immuni.2011.06.012
[21] Edelson, B.T., Kc, W., Juang, R., Kohyama, M., Benoit, L.A., Klekotka, P.A., Moon, C., Albring, J.C., Ise, W., Michael, D.G.,.(2010). Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. J Exp Med 207, 823-836 .10.1084/jem.20091627
[22] Edwards, A.D., Diebold, S.S., Slack, E.M., Tomizawa, H., Hemmi, H., Kaisho, T., Akira, S., and Reis e Sousa, C. (2003). Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol 33, 827-833 .10.1002/eji.200323797
[23] Geijtenbeek, T.B., Kwon, D.S., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Middel, J., Cornelissen, I.L., Nottet, H.S., KewalRamani, V.N., Littman, D.R.,.(2000). DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587-597 .10.1016/S0092-8674(00)80694-7
[24] Geissmann, F., Manz, M.G., Jung, S., Sieweke, M.H., Merad, M., and Ley, K. (2010). Development of monocytes, macrophages, and dendritic cells. Science 327, 656-661 .10.1126/science.1178331
[25] Grumont, R., Hochrein, H., O'Keeffe, M., Gugasyan, R., White, C., Caminschi, I., Cook, W., and Gerondakis, S. (2001). c-Rel regulates interleukin 12 p70 expression in CD8(+) dendritic cells by specifically inducing p35 gene transcription. J Exp Med 194, 1021-1032 .10.1084/jem.194.8.1021
[26] Hashimi, S.T., Fulcher, J.A., Chang, M.H., Gov, L., Wang, S., and Lee, B. (2009). MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 114, 404-414 .10.1182/blood-2008-09-179150
[27] Hochrein, H., Shortman, K., Vremec, D., Scott, B., Hertzog, P., and O'Keeffe, M. (2001). Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol 166, 5448-5455 .
[28] Hsieh, C.S., Macatonia, S.E., Tripp, C.S., Wolf, S.F., O'Garra, A., and Murphy, K.M. (1993). Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547-549 .10.1126/science.8097338
[29] Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., and Steinman, R.M. (1992). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176, 1693-1702 .10.1084/jem.176.6.1693
[30] Iyoda, T., Shimoyama, S., Liu, K., Omatsu, Y., Akiyama, Y., Maeda, Y., Takahara, K., Steinman, R.M., and Inaba, K. (2002). The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 195, 1289-1302 .10.1084/jem.20020161
[31] Jackson, J.T., Hu, Y., Liu, R., Masson, F., D'Amico, A., Carotta, S., Xin, A., Camilleri, M.J., Mount, A.M., Kallies, A., . (2011). Id2 expression delineates differential checkpoints in the genetic program of CD8alpha(+) and CD103(+) dendritic cell lineages. EMBO J 30, 2690-2704 .10.1038/emboj.2011.163
[32] Johnson, S., Zhan, Y., Sutherland, R.M., Mount, A.M., Bedoui, S., Brady, J.L., Carrington, E.M., Brown, L.E., Belz, G.T., Heath, W.R.,.(2009). Selected Toll-like receptor ligands and viruses promote helper-independent cytotoxic T cell priming by upregulating CD40L on dendritic cells. Immunity 30, 218-227 .10.1016/j.immuni.2008.11.015
[33] Jurkin, J., Schichl, Y.M., Koeffel, R., Bauer, T., Richter, S., Konradi, S., Gesslbauer, B., and Strobl, H. (2010). miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol 184, 4955-4965 .10.4049/jimmunol.0903021
[34] Kaplan, D.H., Jenison, M.C., Saeland, S., Shlomchik, W.D., and Shlomchik, M.J. (2005). Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23, 611-620 .10.1016/j.immuni.2005.10.008
[35] King, I.L., Kroenke, M.A., and Segal, B.M. (2010). GM-CSFdependent, CD103+ dermal dendritic cells play a critical role in Theffector cell differentiation after subcutaneous immunization. J Exp Med 207, 953-961 .10.1084/jem.20091844
[36] Kuipers, H., Schnorfeil, F.M., and Brocker, T. (2010a). Differentially expressed microRNAs regulate plasmacytoid vs. conventional dendritic cell development. Mol Immunol 48, 333-340 .10.1016/j.molimm.2010.07.007
[37] Kuipers, H., Schnorfeil, F.M., Fehling, H.J., Bartels, H., and Brocker, T. (2010b). Dicer-dependent microRNAs control maturation, function, and maintenance of Langerhans cells in vivo. J Immunol 185, 400-409 .10.4049/jimmunol.0903912
[38] Lanoue, A., Clatworthy, M.R., Smith, P., Green, S., Townsend, M.J., Jolin, H.E., Smith, K.G., Fallon, P.G., and McKenzie, A.N. (2004). SIGN-R1 contributes to protection against lethal pneumococcal infection in mice. J Exp Med 200, 1383-1393 .10.1084/jem.20040795
[39] Leon, B., Lopez-Bravo, M., and Ardavin, C. (2007). Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519-531 .10.1016/j.immuni.2007.01.017
[40] Lewis, K.L., Caton, M.L., Bogunovic, M., Greter, M., Grajkowska, L.T., Ng, D., Klinakis, A., Charo, I.F., Jung, S., Gommerman, J.L.,.(2011). Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780-791 .10.1016/j.immuni.2011.08.013
[41] Liu, X., Zhan, Z., Xu, L., Ma, F., Li, D., Guo, Z., Li, N., and Cao, X. (2010). MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIalpha. J Immunol 185, 7244-7251 .10.4049/jimmunol.1001573
[42] Liu, Y., Chen, Q., Song, Y., Lai, L., Wang, J., Yu, H., Cao, X., and Wang, Q. (2011). MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation. FEBS Lett 585, 1963-1968 .10.1016/j.febslet.2011.05.029
[43] Lu, C., Huang, X., Zhang, X., Roensch, K., Cao, Q., Nakayama, K.I., Blazar, B.R., Zeng, Y., and Zhou, X. (2011a). miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 117, 4293-4303 .10.1182/blood-2010-12-322503
[44] Lu, L.F., Thai, T.H., Calado, D.P., Chaudhry, A., Kubo, M., Tanaka, K., Loeb, G.B., Lee, H., Yoshimura, A., Rajewsky, K., . (2009a). Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30, 80-91 .10.1016/j.immuni.2008.11.010
[45] Lu, T.X., Hartner, J., Lim, E.J., Fabry, V., Mingler, M.K., Cole, E.T., Orkin, S.H., Aronow, B.J., and Rothenberg, M.E. (2011b). MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 187, 3362-3373 .10.4049/jimmunol.1101235
[46] Lu, T.X., Munitz, A., and Rothenberg, M.E. (2009b). MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182, 4994-5002 .10.4049/jimmunol.0803560
[47] Ma, F., Liu, X., Li, D., Wang, P., Li, N., Lu, L., and Cao, X. (2010). MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolinmediated IL-10 mRNA degradation. J Immunol 184, 6053-6059 .10.4049/jimmunol.0902308
[48] Martinez-Nunez, R.T., Louafi, F., Friedmann, P.S., and Sanchez-Elsner, T. (2009). MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 284, 16334-16342 .10.1074/jbc.M109.011601
[49] Merad, M., Ginhoux, F., and Collin, M. (2008). Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8, 935-947 .10.1038/nri2455
[50] Montecalvo, A., Larregina, A.T., Shufesky, W.J., Stolz, D.B., Sullivan, M.L., Karlsson, J.M., Baty, C.J., Gibson, G.A., Erdos, G., Wang, Z., . (2012). Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119, 756-766 .10.1182/blood-2011-02-338004
[51] Naik, S.H., Metcalf, D., van Nieuwenhuijze, A., Wicks, I., Wu, L., O'Keeffe, M., and Shortman, K. (2006). Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. NatImmunol 7, 663-671 .10.1038/ni1340
[52] Nakano, H., Yanagita, M., and Gunn, M.D. (2001). CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 194, 1171-1178 .10.1084/jem.194.8.1171
[53] Neuenhahn, M., Kerksiek, K.M., Nauerth, M., Suhre, M.H., Schiemann, M., Gebhardt, F.E., Stemberger, C., Panthel, K., Schroder, S., Chakraborty, T., . (2006). CD8alpha+ dendritic cells are required for efficient entry of Listeria monocytogenes into the spleen. Immunity 25, 619-630 .10.1016/j.immuni.2006.07.017
[54] O'Connell, R.M., Chaudhuri, A.A., Rao, D.S., and Baltimore, D. (2009). Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A 106, 7113-7118 .10.1073/pnas.0902636106
[55] O'Connell, R.M., Kahn, D., Gibson, W.S., Round, J.L., Scholz, R.L., Chaudhuri, A.A., Kahn, M.E., Rao, D.S., and Baltimore, D. (2010). MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607-619 .10.1016/j.immuni.2010.09.009
[56] O'Keeffe, M., Hochrein, H., Vremec, D., Caminschi, I., Miller, J.L., Anders, E.M., Wu, L., Lahoud, M.H., Henri, S., Scott, B., . (2002). Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J Exp Med 196, 1307-1319 .10.1084/jem.20021031
[57] Pauley, K.M., Stewart, C.M., Gauna, A.E., Dupre, L.C., Kuklani, R., Chan, A.L., Pauley, B.A., Reeves, W.H., Chan, E.K., and Cha, S. (2011). Altered miR-146a expression in Sjogren's syndrome and its functional role in innate immunity. Eur J Immunol 41, 2029-2039 .10.1002/eji.201040757
[58] Pegtel, D.M., Cosmopoulos, K., Thorley-Lawson, D.A., van Eijndhoven, M.A., Hopmans, E.S., Lindenberg, J.L., de Gruijl, T.D., Wurdinger, T., and Middeldorp, J.M. (2010). Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107, 6328-6333 .10.1073/pnas.0914843107
[59] Poulin, L.F., Henri, S., de Bovis, B., Devilard, E., Kissenpfennig, A., and Malissen, B. (2007). The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med 204, 3119-3131 .10.1084/jem.20071724
[60] Reid, C.D., Stackpoole, A., Meager, A., and Tikerpae, J. (1992). Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow. J Immunol 149, 2681-2688 .
[61] Rodriguez, A., Vigorito, E., Clare, S., Warren, M.V., Couttet, P., Soond, D.R., van Dongen, S., Grocock, R.J., Das, P.P., Miska, E.A.,.(2007). Requirement of bic/microRNA-155 for normal immune function. Science 316, 608-611 .10.1126/science.1139253
[62] Santiago-Schwarz, F., Divaris, N., Kay, C., and Carsons, S.E. (1993). Mechanisms of tumor necrosis factor-granulocyte-macrophage colony-stimulating factor-induced dendritic cell development. Blood 82, 3019-3028 .
[63] Sathe, P., and Wu, L. (2011). The network of cytokines, receptors and transcription factors governing the development of dendritic cell subsets. Protein Cell 2, 620-630 .10.1007/s13238-011-1088-0
[64] Serbina, N.V., and Pamer, E.G. (2006). Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7, 311-317 .10.1038/ni1309
[65] Serbina, N.V., Salazar-Mather, T.P., Biron, C.A., Kuziel, W.A., and Pamer, E.G. (2003). TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59-70 .10.1016/S1074-7613(03)00171-7
[66] Sharma, A., Kumar, M., Aich, J., Hariharan, M., Brahmachari, S.K., Agrawal, A., and Ghosh, B. (2009). Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc Natl Acad Sci U S A 106, 5761-5766 .10.1073/pnas.0808743106
[67] Shklovskaya, E., O'Sullivan, B.J., Ng, L.G., Roediger, B., Thomas, R., Weninger, W., and Fazekas de St Groth, B. (2011). Langerhans cells are precommitted to immune tolerance induction. Proc Natl Acad Sci U S A 108, 18049-18054 .10.1073/pnas.1110076108
[68] Shortman, K., and Naik, S.H. (2007). Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7, 19-30 .10.1038/nri1996
[69] Steinman, R.M., and Cohn, Z.A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137, 1142-1162 .10.1084/jem.137.5.1142
[70] Stockinger, B., and Veldhoen, M. (2007). Differentiation and function of Th17 T cells. Curr Opin Immunol 19, 281-286 .10.1016/j.coi.2007.04.005
[71] Sun, Y., Varambally, S., Maher, C.A., Cao, Q., Chockley, P., Toubai, T., Malter, C., Nieves, E., Tawara, I., Wang, Y.,.(2011). Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood 117, 6172-6183 .10.1182/blood-2010-12-325647
[72] Tserel, L., Runnel, T., Kisand, K., Pihlap, M., Bakhoff, L., Kolde, R., Peterson, H., Vilo, J., Peterson, P., and Rebane, A. (2011). MicroRNA expression profiles of human blood monocyte-derived dendritic cells and macrophages reveal miR-511 as putative positive regulator of Toll-like receptor 4. J Biol Chem 286, 26487-26495 .10.1074/jbc.M110.213561
[73] Turner, M.L., Schnorfeil, F.M., and Brocker, T. (2011). MicroRNAs regulate dendritic cell differentiation and function. J Immunol 187, 3911-3917 .10.4049/jimmunol.1101137
[74] Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., and Lotvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9, 654-659 .10.1038/ncb1596
[75] Varol, C., Vallon-Eberhard, A., Elinav, E., Aychek, T., Shapira, Y., Luche, H., Fehling, H.J., Hardt, W.D., Shakhar, G., and Jung, S. (2009). Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502-512 .10.1016/j.immuni.2009.06.025
[76] Wakim, L.M., Waithman, J., van Rooijen, N., Heath, W.R., and Carbone, F.R. (2008). Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198-202 .10.1126/science.1151869
[77] Wen, H., Dou, Y., Hogaboam, C.M., and Kunkel, S.L. (2008). Epigenetic regulation of dendritic cell-derived interleukin-12 facilitates immunosuppression after a severe innate immune response. Blood 111, 1797-1804 .10.1182/blood-2007-08-106443
[78] Xiao, C., Calado, D.P., Galler, G., Thai, T.H., Patterson, H.C., Wang, J., Rajewsky, N., Bender, T.P., and Rajewsky, K. (2007). MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146-159 .10.1016/j.cell.2007.07.021
[79] Xiao, C., and Rajewsky, K. (2009). MicroRNA control in the immune system: basic principles. Cell 136, 26-36 .10.1016/j.cell.2008.12.027
[80] Xu, Y., Zhan, Y., Lew, A.M., Naik, S.H., and Kershaw, M.H. (2007). Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol 179, 7577-7584 .
[81] Xue, X., Feng, T., Yao, S., Wolf, K.J., Liu, C.G., Liu, X., Elson, C.O., and Cong, Y. (2011). Microbiota downregulates dendritic cell expression of miR-10a, which targets IL-12/IL-23p40. J Immunol 187, 5879-5886 .10.4049/jimmunol.1100535
[82] Zhan, Y., Carrington, E.M., van Nieuwenhuijze, A., Bedoui, S., Seah, S., Xu, Y., Wang, N., Mintern, J.D., Villadangos, J.A., Wicks, I.P.,.(2011). GM-CSF increases cross presentation and CD103 expression by mouse CD8(+) spleen dendritic cells. Eur J Immunol . 41, 2585-2595 .10.1002/eji.201141540
[83] Zhan, Y., Xu, Y., and Lew, A.M. (2012). The regulation of the development and function of dendritic cell subsets by GM-CSF: More than a hematopoietic growth factor. Mol Immunol 52, 30-37 .10.1016/j.molimm.2012.04.009
[84] Zhan, Y., Xu, Y., Seah, S., Brady, J.L., Carrington, E.M., Cheers, C., Croker, B.A., Wu, L., Villadangos, J.A., and Lew, A.M. (2010). Resident and monocyte-derived dendritic cells become dominant IL-12 producers under different conditions and signaling pathways. J Immunol 185, 2125-2133 .10.4049/jimmunol.0903793
[85] Zhang, M., Liu, F., Jia, H., Zhang, Q., Yin, L., Liu, W., Li, H., Yu, B., and Wu, J. (2011). Inhibition of microRNA let-7i depresses maturation and functional state of dendritic cells in response to lipopolysaccharide stimulation via targeting suppressor of cytokine signaling 1. J Immunol 187, 1674-1683 .10.4049/jimmunol.1001937
[86] Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X.,.(2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39, 133-144 .10.1016/j.molcel.2010.06.010
[87] Zheng, J., Jiang, H.Y., Li, J., Tang, H.C., Zhang, X.M., Wang, X.R., Du, J.T., Li, H.B., and Xu, G. (2012). MicroRNA-23b promotes tolerogenic properties of dendritic cells in vitro through inhibiting Notch1/NF-kappaB signalling pathways. Allergy 67, 362-370 .10.1111/j.1398-9995.2011.02776.x
[88] Zhou, H., Huang, X., Cui, H., Luo, X., Tang, Y., Chen, S., Wu, L., and Shen, N. (2010). miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood 116, 5885-5894 .10.1182/blood-2010-04-280156
AI Summary AI Mindmap
PDF(380 KB)

Accesses

Citations

Detail

Sections
Recommended

/