Find and replace: editing human genome in pluripotent stem cells

Huize Pan1, Weiqi Zhang1, Weizhou Zhang2(), Guang-Hui Liu1()

PDF(120 KB)
PDF(120 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (12) : 950-956. DOI: 10.1007/s13238-011-1132-0
MINI-REVIEW
MINI-REVIEW

Find and replace: editing human genome in pluripotent stem cells

  • Huize Pan1, Weiqi Zhang1, Weizhou Zhang2(), Guang-Hui Liu1()
Author information +
History +

Abstract

Genetic manipulation of human pluripotent stem cells (hPSCs) provides a powerful tool for modeling diseases and developing future medicine. Recently a number of independent genome-editing techniques were developed, including plasmid, bacterial artificial chromosome, adeno-associated virus vector, zinc finger nuclease, transcription activator-like effecter nuclease, and helper-dependent adenoviral vector. Gene editing has been successfully employed in different aspects of stem cell research such as gene correction, mutation knock-in, and establishment of reporter cell lines (Raya et al., 2009; Howden et al., 2011; Li et al., 2011; Liu et al., 2011b; Papapetrou et al., 2011; Sebastiano et al., 2011; Soldner et al., 2011; Zou et al., 2011a). These techniques combined with the utility of hPSCs will significantly influence the area of regenerative medicine.

Keywords

gene targeting / gene editing / gene correction / pluripotent stem cell

Cite this article

Download citation ▾
Huize Pan, Weiqi Zhang, Weizhou Zhang, Guang-Hui Liu. Find and replace: editing human genome in pluripotent stem cells. Prot Cell, 2011, 2(12): 950‒956 https://doi.org/10.1007/s13238-011-1132-0

References

[1] Asuri, P., Bartel, M.A., Vazin, T., Jang, J.H., Wong, T.B., and Schaffer, D.V.Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells. Mol Ther . 2011 Nov 22. DOI: 10.1038/mt.2011.255. [Epub ahead of print]
[2] Braam, S.R., Denning, C., van den Brink, S., Kats, P., Hochstenbach, R., Passier, R., and Mummery, C.L. (2008). Improved genetic manipulation of human embryonic stem cells. Nat Methods 5, 389–392 18391958.
[3] Bu, L., Gao, X., Jiang, X., Chien, K.R., and Wang, Z. (2010). Targeted conditional gene knockout in human embryonic stem cells. Cell Res 20, 379–382 20142843.
[4] Bu, L., Jiang, X., Martin-Puig, S., Caron, L., Zhu, S., Shao, Y., Roberts, D.J., Huang, P.L., Domian, I.J., and Chien, K.R. (2009). Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460, 113–117 19571884.
[5] Buecker, C., Chen, H.H., Polo, J.M., Daheron, L., Bu, L., Barakat, T.S., Okwieka, P., Porter, A., Gribnau, J., Hochedlinger, K., (2010). A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell 6, 535–546 20569691.
[6] Cathomen, T., and Joung, J.K. (2008). Zinc-finger nucleases: the next generation emerges. Mol Ther 16, 1200–1207 18545224.
[7] Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., and Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e8221493687.
[8] Costa, M., Dottori, M., Sourris, K., Jamshidi, P., Hatzistavrou, T., Davis, R., Azzola, L., Jackson, S., Lim, S.M., Pera, M., (2007). A method for genetic modification of human embryonic stem cells using electroporation. Nat Protoc 2, 792–796 17446878.
[9] Davis, R.P., Ng, E.S., Costa, M., Mossman, A.K., Sourris, K., Elefanty, A.G., and Stanley, E.G. (2008). Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111, 1876–1884 18032708.
[10] DeKelver, R.C., Choi, V.M., Moehle, E.A., Paschon, D.E., Hockemeyer, D., Meijsing, S.H., Sancak, Y., Cui, X., Steine, E.J., Miller, J.C., (2010). Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res 20, 1133–1142 20508142.
[11] Deyle, D.R., Khan, I.F., Ren, G., Wang, P.-R., Kho, J., Schwarze, U., and Russell, D.W. (2011). Normal collagen and bone production by gene-targeted human osteogenesis imperfecta iPSCs. Mol Ther 25, 20922031238.
[12] Di Domenico, A.I., Christodoulou, I., Pells, S.C., McWhir, J., and Thomson, A.J. (2008). Sequential genetic modification of the hprt locus in human ESCs combining gene targeting and recombinase-mediated cassette exchange. Cloning Stem Cells 10, 217–230 18386992.
[13] Elliott, D.A., Braam, S.R., Koutsis, K., Ng, E.S., Jenny, R., Lagerqvist, E.L., Biben, C., Hatzistavrou, T., Hirst, C.E., Yu, Q.C., NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods. DOI: 10.1038/nmeth.1740. [Epub ahead of print] 10.1038/nmeth.174022020065.
[14] Fischer, Y., Ganic, E., Ameri, J., Xian, X., Johannesson, M., and Semb, H. (2010). NANOG reporter cell lines generated by gene targeting in human embryonic stem cells. PLoS One 5, 520824089.
[15] Gabriel, R., Lombardo, A., Arens, A., Miller, J.C., Genovese, P., Kaeppel, C., Nowrouzi, A., Bartholomae, C.C., Wang, J., Friedman, G., (2011). An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29, 816–823 21822255.
[16] Goulburn, A.L., Alden, D., Davis, R.P., Micallef, S.J., Ng, E.S., Yu, Q.C., Lim, S.M., Soh, C.L., Elliott, D.A., Hatzistavrou, T., (2011). A Targeted NKX2.1 Hesc reporter line enables identification of human basal forebrain derivatives. Stem Cells 29, 462–473 21425409.
[17] Hockemeyer, D., Soldner, F., Beard, C., Gao, Q., Mitalipova, M., DeKelver, R.C., Katibah, G.E., Amora, R., Boydston, E.A., Zeitler, B., (2009). Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27, 851–857 19680244.
[18] Hockemeyer, D., Wang, H., Kiani, S., Lai, C.S., Gao, Q., Cassady, J.P., Cost, G.J., Zhang, L., Santiago, Y., Miller, J.C., (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29, 731–734 21738127.
[19] Howden, S.E., Gore, A., Li, Z., Fung, H.L., Nisler, B.S., Nie, J., Chen, G., McIntosh, B.E., Gulbranson, D.R., Diol, N.R., (2011). Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc Natl Acad Sci U S A 108, 6537–6542 21464322.
[20] Irion, S., Luche, H., Gadue, P., Fehling, H.J., Kennedy, M., and Keller, G. (2007). Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol 25, 1477–1482 18037879.
[21] Jopling, C., Boue, S., and Izpisua Belmonte, J.C. (2011). Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12, 79–89 21252997.
[22] Kamei, K., Guo, S., Yu, Z.T., Takahashi, H., Gschweng, E., Suh, C., Wang, X., Tang, J., McLaughlin, J., Witte, O.N., (2009). An integrated microfluidic culture device for quantitative analysis of human embryonic stem cells. Lab Chip 9, 555–563 19190791.
[23] Khan, I.F., Hirata, R.K., Wang, P.R., Li, Y., Kho, J., Nelson, A., Huo, Y., Zavaljevski, M., Ware, C., and Russell, D.W. (2010). Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol Ther 18, 1192–1199 20407427.
[24] Kiefer, J.C. (2011). Primer and interviews: Advances in targeted gene modification. Dev Dyn 240, 2688–2696 22072577.
[25] Kim, H.W., and Svendsen, C.N. (2011). Gene editing in stem cells hits the target. Cell Stem Cell 9, 93–94 21816359.
[26] Li, M., Suzuki, K., Qu, J., Saini, P., Dubova, I., Yi, F., Lee, J., Sancho-Martinez, I., Liu, G.H., and Belmonte, J.C. (2011). Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Res 34, 1350–1351 .
[27] Liu, G.H., Barkho, B.Z., Ruiz, S., Diep, D., Qu, J., Yang, S.L., Panopoulos, A.D., Suzuki, K., Kurian, L., Walsh, C., (2011a). Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472, 221–225 21346760.
[28] Liu, G.H., Suzuki, K., Qu, J., Sancho-Martinez, I., Yi, F., Li, M., Kumar, S., Nivet, E., Kim, J., Soligalla, R.D., (2011b). Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 8, 688–694 21596650.
[29] Lombardo, A., Cesana, D., Genovese, P., Di Stefano, B., Provasi, E., Colombo, D.F., Neri, M., Magnani, Z., Cantore, A., Lo Riso, P., (2011). Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods 8, 861–869 21857672.
[30] Lombardo, A., Genovese, P., Beausejour, C.M., Colleoni, S., Lee, Y.L., Kim, K.A., Ando, D., Urnov, F.D., Galli, C., Gregory, P.D., (2007). Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25, 1298–1306 17965707.
[31] Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Meng, X., Paschon, D.E., Leung, E., Hinkley, S.J., (2011). A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29, 143–148 21179091.
[32] Mitsui, K., Suzuki, K., Aizawa, E., Kawase, E., Suemori, H., Nakatsuji, N., and Mitani, K. (2009). Gene targeting in human pluripotent stem cells with adeno-associated virus vectors. Biochem Biophys Res Commun 388, 711–717 19695233.
[33] Mussolino, C., Morbitzer, R., Lütge, F., Dannemann, N., Lahaye, T., and Cathomen, T. (2011). A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39, 9283–9293 21813459.
[34] Papapetrou, E.P., Lee, G., Malani, N., Setty, M., Riviere, I., Tirunagari, L.M., Kadota, K., Roth, S.L., Giardina, P., Viale, A., (2011). Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 29, 73–78 21151124.
[35] Pattanayak, V., Ramirez, C.L., Joung, J.K., and Liu, D.R. (2011). Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8, 765–770 21822273.
[36] Ramachandra, C.J., Shahbazi, M., Kwang, T.W., Choudhury, Y., Bak, X.Y., Yang, J., and Wang, S. (2011). Efficient recombinase-mediated cassette exchange at the AAVS1 locus in human embryonic stem cells using baculoviral vectors. Nucleic Acids Res 39, e10721685448.
[37] Raya, A., Rodríguez-Pizà, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M.J., Consiglio, A., Castellà, M., Río, P., Sleep, E., (2009). Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59 19483674.
[38] Ruby, K.M., and Zheng, B. (2009). Gene targeting in a HUES line of human embryonic stem cells via electroporation. Stem Cells 27, 1496–1506 19544466.
[39] Sakurai, K., Shimoji, M., Tahimic, C.G.T., Aiba, K., Kawase, E., Hasegawa, K., Amagai, Y., Suemori, H., and Nakatsuji, N. (2010). Efficient integration of transgenes into a defined locus in human embryonic stem cells. Nucleic Acids Res 38, e9620071742.
[40] Sancho-Martinez, I., Li, M., and Izpisua Belmonte, J.C. (2011). Disease correction the iPSC way: advances in iPSC-based therapy. Clin Pharmacol Ther 89, 746–749 21389982.
[41] Sebastiano, V., Maeder, M.L., Angstman, J.F., Haddad, B., Khayter, C., Yeo, D.T., Goodwin, M.J., Hawkins, J.S., Ramirez, C.L., Batista, L.F., (2011). In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29, 1717–1726 21898685.
[42] Soldner, F., Laganière, J., Cheng, A.W., Hockemeyer, D., Gao, Q., Alagappan, R., Khurana, V., Golbe, L.I., Myers, R.H., Lindquist, S., (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146, 318–331 21757228.
[43] Song, H., Chung, S.K., and Xu, Y. (2010). Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6, 80–89 20074536.
[44] Suzuki, K., Mitsui, K., Aizawa, E., Hasegawa, K., Kawase, E., Yamagishi, T., Shimizu, Y., Suemori, H., Nakatsuji, N., and Mitani, K. (2008). Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors. Proc Natl Acad Sci U S A 105, 13781–13786 18768795.
[45] Urbach, A., Schuldiner, M., and Benvenisty, N. (2004). Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22, 635–641 15277709.
[46] Xue, H., Wu, S., Papadeas, S.T., Spusta, S., Swistowska, A.M., MacArthur, C.C., Mattson, M.P., Maragakis, N.J., Capecchi, M.R., Rao, M.S., (2009). A targeted neuroglial reporter line generated by homologous recombination in human embryonic stem cells. Stem Cells 27, 1836–1846 19544414.
[47] Yusa, K., Rashid, S.T., Strick-Marchand, H., Varela, I., Liu, P.-Q., Paschon, D.E., Miranda, E., Ordó?ez, A., Hannan, N.R.F., Rouhani, F.J., (2011). Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478, 391–394 21993621.
[48] Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G.M., and Arlotta, P. (2011). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29, 149–153 21248753.
[49] Zou, J., Maeder, M.L., Mali, P., Pruett-Miller, S.M., Thibodeau-Beganny, S., Chou, B.K., Chen, G., Ye, Z., Park, I.H., Daley, G.Q., (2009). Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5, 97–110 19540188.
[50] Zou, J., Mali, P., Huang, X., Dowey, S.N., and Cheng, L. (2011a). Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 118, 4599–4608 21881051.
[51] Zou, J., Sweeney, C.L., Chou, B.K., Choi, U., Pan, J., Wang, H., Dowey, S.N., Cheng, L., and Malech, H.L. (2011b). Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 117, 5561–5572 21411759.
[52] Zwaka, T.P., and Thomson, J.A. (2003). Homologous recombination in human embryonic stem cells. Nat Biotechnol 21, 319–321 12577066
AI Summary AI Mindmap
PDF(120 KB)

Accesses

Citations

Detail

Sections
Recommended

/