Secondary metabolism in simulated microgravity and space flight

Hong Gao1,2, Zhiheng Liu1, Lixin Zhang1()

PDF(70 KB)
PDF(70 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (11) : 858-861. DOI: 10.1007/s13238-011-1125-z
PERSPECTIVE
PERSPECTIVE

Secondary metabolism in simulated microgravity and space flight

  • Hong Gao1,2, Zhiheng Liu1, Lixin Zhang1()
Author information +
History +

Abstract

Space flight experiments have suggested that microgravity can affect cellular processes in microorganisms. To simulate the microgravity environment on earth, several models have been developed and applied to examine the effect of microgravity on secondary metabolism. In this paper, studies of effects of space flight on secondary metabolism are exemplified and reviewed along with the advantages and disadvantages of the current models used for simulating microgravity. This discussion is both signi?cant and timely to researchers considering the use of simulated microgravity or space flight to explore effects of weightlessness on secondary metabolism.

Keywords

simulated microgravity / space flight / microorganism / secondary metabolism

Cite this article

Download citation ▾
Hong Gao, Zhiheng Liu, Lixin Zhang. Secondary metabolism in simulated microgravity and space flight. Prot Cell, 2011, 2(11): 858‒861 https://doi.org/10.1007/s13238-011-1125-z

References

[1] Benoit, M.R., Li, W., Stodieck, L.S., Lam, K.S., Winther, C.L., Roane, T.M., and Klaus, D.M. (2006). Microbial antibiotic production aboard the International Space Station. Appl Microbiol Biotechnol 70, 403–411 16091928.
[2] Beuls, E., Van Houdt, R., Leys, N., Dijkstra, C., Larkin, O., and Mahillon, J. (2009). Bacillus thuringiensis conjugation in simulated microgravity. Astrobiology 9, 797–805 19845449.
[3] Coleman, C.B., Gonzalez-Villalobos, R.A., Allen, P.L., Johanson, K., Guevorkian, K., Valles, J.M., and Hammond, T.G. (2007). Diamagnetic levitation changes growth, cell cycle, and gene expression of Saccharomyces cerevisiae. Biotechnol Bioeng 98, 854–863 17546692.
[4] Crabbé, A., De Boever, P., Van Houdt, R., Moors, H., Mergeay, M., and Cornelis, P. (2008). Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01. Environ Microbiol 10, 2098–2110 18430020.
[5] Dijkstra, C.E., Larkin, O.J., Anthony, P., Davey, M.R., Eaves, L., Rees, C.E., and Hill, R.J. (2011). Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability. J R Soc Interface 8, 334–344 20667843.
[6] Fang, A., Pierson, D.L., Koenig, D.W., Mishra, S.K., and Demain, A.L. (1997a). Effect of simulated microgravity and shear stress on microcin B17 production by Escherichia coli and on its excretion into the medium. Appl Environ Microbiol 63, 4090–4092 9327574.
[7] Fang, A., Pierson, D.L., Mishra, S.K., and Demain, A.L. (2000). Growth of Steptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production. Appl Microbiol Biotechnol 54, 33–36 10952002.
[8] Fang, A., Pierson, D.L., Mishra, S.K., Koenig, D.W., and Demain, A.L. (1997b). Gramicidin S production by Bacillus brevis in simulated microgravity. Curr Microbiol 34, 199–204 9058537.
[9] Fang, A., Pierson, D.L., Mishra, S.K., Koenig, D.W., and Demain, A.L. (1997c). Secondary metabolism in simulated microgravity:β-lactam production by Streptomyces clavuligerus. J Ind Microbiol Biotechnol 18, 22–25 9079284.
[10] Gao, H., Liu, M., Liu, J.T., Dai, H.Q., Zhou, X.L., Liu, X.Y., Zhuo, Y., Zhang, W.Q., and Zhang, L.X. (2009). Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour Technol 100, 4012–4016 19356927.
[11] Gao, H., Liu, M., Zhuo, Y., Zhou, X.L., Liu, J.T., Chen, D.F., Zhang, W.Q., Gou, Z.X., Shang, P., and Zhang, L.X. (2010). Assessing the potential of an induced-mutation strategy for avermectin overproducers. Appl Environ Microbiol 76, 4583–4586 20453119.
[12] Liu, M., Gao, H., Shang, P., Zhou, X.L., Ashforth, E., Zhuo, Y., Chen, D.F., Ren, B., Liu, Z.H., and Zhang, L.X. (2011). Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation. PLoS One 6, e24697 .
[13] Gao, Q., Fang, A., Pierson, D.L., Mishra, S.K., and Demain, A.L. (2001). Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does not. Appl Microbiol Biotechnol 56, 384–387 11549006.
[14] Guevorkian, K., and Valles, J.M. Jr. (2006). Swimming Paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments. Proc Natl Acad Sci U S A 103, 13051–13056 16916937.
[15] Hammond, T.G., and Hammond, J.M. (2001). Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol 281, F12–F25 11399642.
[16] Hejnowicz, Z., Sondag, C., Alt, W., and Sievers, A. (1998). Temporal course of graviperception in intermittently stimulated cress roots. Plant Cell Environ 21, 1293–1300 11541775.
[17] Kerr, R.A. (2011). Planetary science. Price tags for planet missions force NASA to lower its sights. Science 331, 1254–1255 21393521.
[18] Kuznetsov, O.A., and Hasenstein, K.H. (1996). Intracellular magnetophoresis of amyloplasts and induction of root curvature. Planta 198, 87–94 8580774.
[19] Liu, Y., Zhu, D.-M., Strayer, D.M., and Israelsson, U.E. (2010). Magnetic levitation of large water droplets and mice. Adv Space Res 45, 208–213 .
[20] Nickerson, C.A., Ott, C.M., Wilson, J.W., Ramamurthy, R., and Pierson, D.L. (2004). Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 68, 345–361 15187188.
[21] Qi, F., Dai, D., Liu, Y., Kaleem, I., and Li, C. (2011). Effects of low-shear modeled microgravity on the characterization of recombinant β-D-glucuronidase expressed in Pichia pastoris. Appl Biochem Biotechnol 163, 162–172 20607443.
[22] Spizizen, J., Isherwood, J.E., and Taylor, G.R. (1975). Effects of solar ultraviolet radiations on Bacillus subtilis spores and T7 bacteriophage. Life Sci Space Res 13, 143–149 11913419.
[23] Tixador, R., Richoilley, G., Gasset, G., Templier, J., Bes, J.C., Moatti, N., and Lapchine, L. (1985). Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 experiment). Aviat Space Environ Med 56, 748–751 3899095.
[24] Wakayama, N.I., Yin, D.C., Harata, K., Kiyoshi, T., Fujiwara, M., and Tanimoto, Y. (2006). Macromolecular crystallization in microgravity generated by a superconducting magnet. Ann N Y Acad Sci 1077, 184–193 17124123.
[25] Wilson, J.W., Ott, C.M., H?ner zu Bentrup, K., Ramamurthy, R., Quick, L., Porwollik, S., Cheng, P., McClelland, M., Tsaprailis, G., Radabaugh, T., (2007). Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci U S A 104, 16299–16304 17901201.
[26] Xiao, Y., Liu, Y.D., Wang, G.H., Hao, Z.J., and An, Y.J. (2010). Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta). Toxicon 56, 1–7 20156472.
[27] Zhou, J.Q., Sun, C.H., Wang, N.J., Gao, R.M., Bai, S.K., Zheng, H.R., You, X.F., and Li, R.F. (2006). Preliminary report on the biological effects of space flight on the producing strain of a new immunosuppressant, Kanglemycin C. J Ind Microbiol Biotechnol 33, 707–712 16609855.
AI Summary AI Mindmap
PDF(70 KB)

Accesses

Citations

Detail

Sections
Recommended

/