Progress in targeted delivery of siRNA to combat Coxsackievirus

Anju Gautam()

PDF(56 KB)
PDF(56 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (11) : 855-857. DOI: 10.1007/s13238-011-1124-0
NEWS AND VIEWS
NEWS AND VIEWS

Progress in targeted delivery of siRNA to combat Coxsackievirus

  • Anju Gautam()
Author information +
History +

Cite this article

Download citation ▾
Anju Gautam. Progress in targeted delivery of siRNA to combat Coxsackievirus. Prot Cell, 2011, 2(11): 855‒857 https://doi.org/10.1007/s13238-011-1124-0

References

[1] Baulcombe, D. (2002). RNA silencing. Curr Biol 12, R82–R84 11839284.
[2] Bergelson, J.M., Cunningham, J.A., Droguett, G., Kurt-Jones, E.A., Krithivas, A., Hong, J.S., Horwitz, M.S., Crowell, R.L., and Finberg, R.W. (1997). Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323 9036860.
[3] Cetta, F., and Michels, V.V. (1995). The autoimmune basis of dilated cardiomyopathy. Ann Med 27, 169–173 7632409.
[4] Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 11373684.
[5] Dorsett, Y., and Tuschl, T. (2004). siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3, 318–329 .
[6] Fields, B.N., Knipe, D.M., Howley, P.M., and Griffin, D.E. (2001). Fields virology, 4th ed. , vol. 1. Philadelphia, Pa: Lippincott Williams & Wilkins.
[7] Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 9486653.
[8] Grist, N.R., and Reid, D. (1993). Epidemiology of viral infections of the heart. In: Viral infections of the heart . Banatvala J. E. ed. London, England: Edward Arnold, 23–31 .
[9] Henke, A., Jarasch, N., and Wutzler, P. (2003). Vaccination procedures against Coxsackievirus-induced heart disease. Expert Rev Vaccines 2, 805–815 14711363.
[10] Kandolf, R. (1993). Molecular biology of viral heart disease. Herz 18, 238–244 8397158.
[11] Klump, W.M., Bergmann, I., Müller, B.C., Ameis, D., and Kandolf, R. (1990). Complete nucleotide sequence of infectious Coxsackievirus B3 cDNA: two initial 5′ uridine residues are regained during plus-strand RNA synthesis. J Virol 64, 1573–1583 2157045.
[12] Liu, Z., Carthy, C.M., Cheung, P., Bohunek, L., Wilson, J.E., McManus, B.M., and Yang, D. (1999). Structural and functional analysis of the 5′ untranslated region of coxsackievirus B3 RNA: In vivo translational and infectivity studies of full-length mutants. Virology 265, 206–217 10600593.
[13] Martino, T.A., Liu, P., and Sole, M.J. (1994). Viral infection and the pathogenesis of dilated cardiomyopathy. Circ Res 74, 182–188 8293557.
[14] Merl, S., Michaelis, C., Jaschke, B., Vorpahl, M., Seidl, S., and Wessely, R. (2005). Targeting 2A protease by RNA interference attenuates coxsackieviral cytopathogenicity and promotes survival in highly susceptible mice. Circulation 111, 1583–1592 15795330.
[15] Racchi, G., Klingel, K., Kandolf, R., and Grassi, G. (2009). Targeting of protease 2A genome by single and multiple siRNAs as a strategy to impair CVB3 life cycle in permissive HeLa cells. Methods Find Exp Clin Pharmacol 31, 63–70 19455260.
[16] Reyes, M.P., and Lerner, A.M. (1985). Coxsackievirus myocarditis—with special reference to acute and chronic effects. Prog Cardiovasc Dis 27, 373–394 2988014.
[17] Rose, N.R., Herskowitz, A., and Neumann, D.A. (1993). Autoimmunity in myocarditis: models and mechanisms. Clin Immunol Immunopathol 68, 95–99 8395364.
[18] Vaucheret, H., Béclin, C., and Fagard, M. (2001). Post-transcriptional gene silencing in plants. J Cell Sci 114, 3083–3091 11590235.
[19] Woodruff, J.F. (1980). Viral myocarditis. A review. Am J Pathol 101, 425–484 6254364.
[20] Yang, D., Wilson, J.E., Anderson, D.R., Bohunek, L., Cordeiro, C., Kandolf, R., and McManus, B.M. (1997). In vitro mutational and inhibitory analysis of the cis-acting translational elements within the 5′ untranslated region of coxsackievirus B3: potential targets for antiviral action of antisense oligomers. Virology 228, 63–73 9024810.
[21] Ye, X., Liu, Z., Hemida, M.G., and Yang, D. (2011). Targeted delivery of mutant tolerant anti-coxsackievirus artificial microRNAs using folate conjugated bacteriophage Phi29 pRNA. PLoS One 6, e2121521698212.
[22] Yuan, J., Cheung, P.K., Zhang, H.M., Chau, D., and Yang, D. (2005). Inhibition of coxsackievirus B3 replication by small interfering RNAs requires perfect sequence match in the central region of the viral positive strand. J Virol 79, 2151–2159 15681418.
[23] Zhang, H.M., Su, Y., Guo, S., Yuan, J., Lim, T., Liu, J., Guo, P., and Yang, D. (2009). Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs. Antiviral Res 83, 307–316 19616030.
AI Summary AI Mindmap
PDF(56 KB)

Accesses

Citations

Detail

Sections
Recommended

/