A genome-wide RNAi screen identifies genes regulating the formation of P bodies in C. elegans and their functions in NMD and RNAi

Yinyan Sun1, Peiguo Yang1,2, Yuxia Zhang1, Xin Bao1, Jun Li1, Wenru Hou1, Xiangyu Yao1, Jinghua Han1, Hong Zhang1()

PDF(1193 KB)
PDF(1193 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (11) : 918-939. DOI: 10.1007/s13238-011-1119-x
RESEARCH ARTICLE
RESEARCH ARTICLE

A genome-wide RNAi screen identifies genes regulating the formation of P bodies in C. elegans and their functions in NMD and RNAi

  • Yinyan Sun1, Peiguo Yang1,2, Yuxia Zhang1, Xin Bao1, Jun Li1, Wenru Hou1, Xiangyu Yao1, Jinghua Han1, Hong Zhang1()
Author information +
History +

Abstract

Cytoplasmic processing bodies, termed P bodies, are involved in diverse post-transcriptional processes including mRNA decay, nonsense-mediated RNA decay (NMD), RNAi, miRNA-mediated translational repression and storage of translationally silenced mRNAs. Regulation of the formation of P bodies in the context of multicellular organisms is poorly understood. Here we describe a systematic RNAi screen in C. elegans that identified 224 genes with diverse cellular functions whose inactivations result in a dramatic increase in the number of P bodies. 83 of these genes form a complex functional interaction network regulating NMD. We demonstrate that NMD interfaces with many cellular processes including translation, ubiquitin-mediated protein degradation, intracellular trafficking and cytoskeleton structure. We also uncover an extensive link between translation and RNAi, with different steps in protein synthesis appearing to have distinct effects on RNAi efficiency. Moreover, the intracellular vesicular trafficking network plays an important role in the regulation of RNAi. A subset of genes enhancing P body formation also regulate the formation of stress granules in C.?elegans. Our study offers insights into the cellular mechanisms that regulate the formation of P bodies and also provides a framework for system-level understanding of NMD and RNAi in the context of the development of multicellular organisms.

Keywords

P body / stress granules / nonsense-mediated RNA decay (NMD) / RNA interference / C. elegans

Cite this article

Download citation ▾
Yinyan Sun, Peiguo Yang, Yuxia Zhang, Xin Bao, Jun Li, Wenru Hou, Xiangyu Yao, Jinghua Han, Hong Zhang. A genome-wide RNAi screen identifies genes regulating the formation of P bodies in C. elegans and their functions in NMD and RNAi. Prot Cell, 2011, 2(11): 918‒939 https://doi.org/10.1007/s13238-011-1119-x

References

[1] Anderson, P., and Kedersha, N. (2006). RNA granules. J Cell Biol 172, 803-808 16520386.
[2] Basu, U., Si, K., Warner, J.R., and Maitra, U. (2001). The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol Cell Biol 21, 1453-1462 11238882.
[3] Behm-Ansmant, I., and Izaurralde, E. (2006). Quality control of gene expression: a stepwise assembly pathway for the surveillance complex that triggers nonsense-mediated mRNA decay. Genes Dev 20, 391-398 16481468.
[4] Brengues, M., Teixeira, D., and Parker, R. (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486-489 16141371.
[5] Bruno, I., and Wilkinson, M.F. (2006). P-bodies react to stress and nonsense. Cell 125, 1036-1038 16777595.
[6] Chen, C.C., Simard, M.J., Tabara, H., Brownell, D.R., McCollough, J.A., and Mello, C.C. (2005). A member of the polymerase beta nucleotidyltransferase superfamily is required for RNA interference in C. elegans. Curr Biol 15, 378-383 15723801.
[7] Chendrimada, T.P., Finn, K.J., Ji, X., Baillat, D., Gregory, R.I., Liebhaber, S.A., Pasquinelli, A.E., and Shiekhattar, R. (2007). MicroRNA silencing through RISC recruitment of eIF6. Nature 447, 823-828 17507929.
[8] Chu, C.Y., and Rana, T.M. (2006). Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4, e21016756390.
[9] Cougot, N., Babajko, S., and Séraphin, B. (2004). Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 165, 31-40 15067023.
[10] Cui, Y., González, C.I., Kinzy, T.G., Dinman, J.D., and Peltz, S.W. (1999). Mutations in the MOF2/SUI1 gene affect both translation and nonsense-mediated mRNA decay. RNA 5, 794-804 10376878.
[11] Domeier, M.E., Morse, D.P., Knight, S.W., Portereiko, M., Bass, B.L., and Mango, S.E. (2000). A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. Science 289, 1928-1931 10988072.
[12] Eulalio, A., Behm-Ansmant, I., Schweizer, D., and Izaurralde, E. (2007). P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27, 3970-3981 17403906.
[13] Gu, S., and Rossi, J.J. (2005). Uncoupling of RNAi from active translation in mammalian cells. RNA 11, 38-44 15574516.
[14] Halawani, D., and Latterich, M. (2006). p97: The cell’s molecular purgatory? Mol Cell 22, 713-717 16793541.
[15] He, F., and Jacobson, A. (1995). Identification of a novel component of the nonsense-mediated mRNA decay pathway by use of an interacting protein screen. Genes Dev 9, 437-454 7883168.
[16] Hedges, J., Chen, Y.I., West, M., Bussiere, C., and Johnson, A.W. (2006). Mapping the functional domains of yeast NMD3, the nuclear export adapter for the 60 S ribosomal subunit. J Biol Chem 281, 36579-36587 17015443.
[17] Hodgkin, J., Papp, A., Pulak, R., Ambros, V., and Anderson, P. (1989). A new kind of informational suppression in the nematode Caenorhabditis elegans. Genetics 123, 301-313 2583479.
[18] Hosoda, N., Kim, Y.K., Lejeune, F., and Maquat, L.E. (2005). CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat Struct Mol Biol 12, 893-901 16186820.
[19] Houseley, J., LaCava, J., and Tollervey, D. (2006). RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7, 529-539 16829983.
[20] Isken, O., and Maquat, L.E. (2007). Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 21, 1833-1856 17671086.
[21] Jakymiw, A., Lian, S., Eystathioy, T., Li, S., Satoh, M., Hamel, J.C., Fritzler, M.J., and Chan, E.K. (2005). Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol 7, 1267-1274 16284622.
[22] Johnson, A.W. (1997). Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol Cell Biol 17, 6122-6130 9315672.
[23] Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fritzler, M.J., Scheuner, D., Kaufman, R.J., Golan, D.E., and Anderson, P. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169, 871-884 15967811.
[24] Kedersha, N.L., Gupta, M., Li, W., Miller, I., and Anderson, P. (1999). RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147, 1431-1442 10613902.
[25] Kennedy, S., Wang, D., and Ruvkun, G. (2004). A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427, 645-649 14961122.
[26] Kennerdell, J.R., Yamaguchi, S., and Carthew, R.W. (2002). RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes Dev 16, 1884-1889 12154120.
[27] Ketting, R.F., Haverkamp, T.H., van Luenen, H.G., and Plasterk, R.H. (1999). Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133-141 10535732.
[28] Kim, J.K., Gabel, H.W., Kamath, R.S., Tewari, M., Pasquinelli, A., Rual, J.F., Kennedy, S., Dybbs, M., Bertin, N., Kaplan, J.M., (2005). Functional genomic analysis of RNA interference in C. elegans. Science 308, 1164-1167 15790806.
[29] Kimball, S.R., Horetsky, R.L., Ron, D., Jefferson, L.S., and Harding, H.P. (2003). Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am J Physiol Cell Physiol 284, C273-C284 12388085.
[30] Liu, H.Y., Chiang, Y.C., Pan, J., Chen, J., Salvadore, C., Audino, D.C., Badarinarayana, V., Palaniswamy, V., Anderson, B., and Denis, C.L. (2001). Characterization of CAF4 and CAF16 reveals a functional connection between the CCR4-NOT complex and a subset of SRB proteins of the RNA polymerase II holoenzyme. J Biol Chem 276, 7541-7548 11113136.
[31] Liu, J., Rivas, F.V., Wohlschlegel, J., Yates, J.R. 3rd, Parker, R., and Hannon, G.J. (2005a). A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7, 1261-1266 16284623.
[32] Liu, J., Valencia-Sanchez, M.A., Hannon, G.J., and Parker, R. (2005b). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7, 719-723 15937477.
[33] Longman, D., Plasterk, R.H., Johnstone, I.L., and Cáceres, J.F. (2007). Mechanistic insights and identification of two novel factors in the C. elegans NMD pathway. Genes Dev 21, 1075-1085 17437990.
[34] Lotan, R., Bar-On, V.G., Harel-Sharvit, L., Duek, L., Melamed, D., and Choder, M. (2005). The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs. Genes Dev 19, 3004-3016 16357218.
[35] Mango, S.E. (2001). Stop making nonSense: the C. elegans smg genes. Trends Genet 17, 646-653 11672865.
[36] Maquat, L.E. (2004). Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5, 89-99 15040442.
[37] Orban, T.I., and Izaurralde, E. (2005). Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 11, 459-469 15703439.
[38] Parker, R., and Sheth, U. (2007). P bodies and the control of mRNA translation and degradation. Mol Cell 25, 635-646 17349952.
[39] Parry, D.H., Xu, J., and Ruvkun, G. (2007). A whole-genome RNAi Screen for C. elegans miRNA pathway genes. Curr Biol 17, 2013-2022 18023351.
[40] Pham, J.W., Pellino, J.L., Lee, Y.S., Carthew, R.W., and Sontheimer, E.J. (2004). A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83-94 15066284.
[41] Rehwinkel, J., Behm-Ansmant, I., Gatfield, D., and Izaurralde, E. (2005). A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11, 1640-1647 16177138.
[42] Robert, V.J., Sijen, T., van Wolfswinkel, J., and Plasterk, R.H. (2005). Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences. Genes Dev 19, 782-787 15774721.
[43] Sen, G.L., and Blau, H.M. (2005). Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7, 633-636 15908945.
[44] Sheth, U., and Parker, R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-808 12730603.
[45] Sheth, U., and Parker, R. (2006). Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell 125, 1095-1109 16777600.
[46] Simmer, F., Tijsterman, M., Parrish, S., Koushika, S.P., Nonet, M.L., Fire, A., Ahringer, J., and Plasterk, R.H. (2002). Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 12, 1317-1319 12176360.
[47] Teixeira, D., and Parker, R. (2007). Analysis of P-body assembly in Saccharomyces cerevisiae. Mol Biol Cell 18, 2274-2287 17429074.
[48] Vastenhouw, N.L., Fischer, S.E., Robert, V.J., Thijssen, K.L., Fraser, A.G., Kamath, R.S., Ahringer, J., and Plasterk, R.H. (2003). A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr Biol 13, 1311-1316 12906791.
[49] Wang, D., Kennedy, S., Conte, D. Jr, Kim, J.K., Gabel, H.W., Kamath, R.S., Mello, C.C., and Ruvkun, G. (2005). Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436, 593-597 16049496.
[50] Xia, D., Zhang, Y., Huang, X., Sun, Y., and Zhang, H. (2007). The C. elegans CBFbeta homolog, BRO-1, regulates the proliferation, differentiation and specification of the stem cell-like seam cell lineages. Dev Biol 309, 259-272 17706957.
[51] Zhong, W., and Sternberg, P.W. (2006). Genome-wide prediction of C. elegans genetic interactions. Science 311, 1481-1484 16527984.
[52] Zuk, D., Belk, J.P., and Jacobson, A. (1999). Temperature-sensitive mutations in the Saccharomyces cerevisiae MRT4, GRC5, SLA2 and THS1 genes result in defects in mRNA turnover. Genetics 153, 35-47 10471698.
AI Summary AI Mindmap
PDF(1193 KB)

Accesses

Citations

Detail

Sections
Recommended

/