Protein-protein complexation in bioluminescence

Maxim S. Titushin1, Yingang Feng2, John Lee3, Eugene S. Vysotski4, Zhi-Jie Liu1()

PDF(1091 KB)
PDF(1091 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (12) : 957-972. DOI: 10.1007/s13238-011-1118-y
REVIEW
REVIEW

Protein-protein complexation in bioluminescence

  • Maxim S. Titushin1, Yingang Feng2, John Lee3, Eugene S. Vysotski4, Zhi-Jie Liu1()
Author information +
History +

Abstract

In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an “accessory protein” whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an “antenna protein” altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca2+-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of X-ray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.

Keywords

green-fluorescent protein (GFP) / photoprotein / luciferase / lumazine protein / F?rster resonance energy transfer (FRET) / docking

Cite this article

Download citation ▾
Maxim S. Titushin, Yingang Feng, John Lee, Eugene S. Vysotski, Zhi-Jie Liu. Protein-protein complexation in bioluminescence. Prot Cell, 2011, 2(12): 957‒972 https://doi.org/10.1007/s13238-011-1118-y

References

[1] Anderson, J.M., Charbonneau, H., and Cormier, M.J. (1974). Mechanism of calcium induction of Renilla bioluminescence. Involvement of a calcium-triggered luciferin binding protein. Biochemistry 13, 1195-1200 4149963.
[2] Anderson, J.M., and Cormier, M.J. (1973). Lumisomes, the cellular site of bioluminescence in coelenterates. J Biol Chem 248, 2937-2943 4144548.
[3] Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201 16301204.
[4] Baker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98, 10037-10041 .
[5] Baldwin, T.O., Treat, M.L., and Daubner, S.C. (1990). Cloning and expression of the luxY gene from Vibrio fischeri strain Y-1 in Escherichia coli and complete amino acid sequence of the yellow fluorescent protein. Biochemistry 29, 5509-5515 2201407.
[6] Baldwin, T.O., and Ziegler, M.M. (1992). The biochemistry and molecular biology of bacterial bioluminescence. In: Chemistry and Biochemistry of Flavoenzymes III . Mueller F., ed. Boca Raton, Florida: CRC Press, 467-530 .
[7] Berg, O.G., and von Hippel, P.H. (1985). Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem 14, 131-160 3890878.
[8] Campbell, Z.T., Baldwin, T.O., and Miyashita, O. (2010). Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics. Biophys J 99, 4012-4019 21156144.
[9] Campbell, Z.T., Weichsel, A., Montfort, W.R., and Baldwin, T.O. (2009). Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit. Biochemistry 48, 6085-6094 19435287.
[10] Charbonneau, H., and Cormier, M.J. (1979). Ca2+-induced bioluminescence in Renilla reniformis. Purification and characterization of a calcium-triggered luciferin-binding protein. J Biol Chem 254, 769-780 33174.
[11] Chatwell, L., Illarionova, V.A., Illarionov, B., Eisenreich, W., Huber, R., Skerra, A., Bacher, A., and Fischer, M. (2008). Structure of lumazine protein, an optical transponder of luminescent bacteria. J Mol Biol 382, 44-55 18602927.
[12] Cormier, M.J. (1978). Comparative biochemistry of animal systems. In: Bioluminescence in Action . Herring P.J., ed. London: Academic Press, 75-108 .
[13] Cormier, M.J., and Charbonneau, H. (1977). Isolation, properties and function of a calcium-triggered luciferin binding protein. In: Calcium Binding Proteins and Calcium Function . Wasserman H.R., ed. North-Holland: Elsevier, 481-489 .
[14] Cormier, M.J., Hori, K., and Anderson, J.M. (1974). Bioluminescence in coelenterates. Biochim Biophys Acta 346, 137-164 4154104.
[15] Cormier, M.J., Lee, J., and Wampler, J.E. (1975). Bioluminescence: recent advances. Annu Rev Biochem 44, 255-272 237461.
[16] Cutler, M.W. (1995). Characterization and energy transfer mechanism of the green-fluorescent protein from Aequorea victoria. DissertationTip, Rutgers University, New Brunswick, NJ .
[17] Cutler, M.W., and Ward, W.W. (1997). Spectral analysis and proposed model for GFP dimerization. In: Bioluminescence and Chemiluminescence: Molecular Reporting with Photons . Hastings J.W., Kricka L.J., and Stanley P.E., eds. New York: Wiley-Liss, 596-599 .
[18] Daubner, S.C., Astorga, A.M., Leisman, G.B., and Baldwin, T.O. (1987). Yellow light emission of Vibrio fischeri strain Y-1: purification and characterization of the energy-accepting yellow fluorescent protein. Proc Natl Acad Sci U S A 84, 8912-8916 3480518.
[19] de Vries, S.J., van Dijk, A.D.J., Krzeminski, M., van Dijk, M., Thureau, A., Hsu, V., Wassenaar, T., and Bonvin, A.M.J.J. (2007). HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69, 726-733 17803234.
[20] DeLuca, M., Dempsey, M.E., Hori, K., Wampler, J.E., and Cormier, M.J. (1971). Mechanism of oxidative carbon dioxide production during Renilla reniformis bioluminescence. Proc Natl Acad Sci U S A 68, 1658-1660 4397765.
[21] Deng, L., Vysotski, E.S., Markova, S.V., Liu, Z.-J., Lee, J., Rose, J., and Wang, B.-C. (2005). All three Ca2+-binding loops of photoproteins bind calcium ions: the crystal structures of calcium-loaded apo-aequorin and apo-obelin. Protein Sci 14, 663-675 15689515.
[22] Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., and Baker, N.A. (2004). PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32, W665-W667 .
[23] Dominguez, C., Boelens, R., and Bonvin, A.M.J.J. (2003). HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125, 1731-1737 12580598.
[24] Dunlap, K., Takeda, K., and Brehm, P. (1987). Activation of a calcium-dependent photoprotein by chemical signalling through gap junctions. Nature 325, 60-62 2879248.
[25] Eckstein, J.W., Cho, K.W., Colepicolo, P., Ghisla, S., Hastings, J.W., and Wilson, T. (1990). A time-dependent bacterial bioluminescence emission spectrum in an in vitro single turnover system: energy transfer alone cannot account for the yellow emission of Vibrio fischeri Y-1. Proc Natl Acad Sci U S A 87, 1466-1470 2304912.
[26] Fisher, A.J., Raushel, F.M., Baldwin, T.O., and Rayment, I. (1995). Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution. Biochemistry 34, 6581-6586 7756289.
[27] Fisher, A.J., Thompson, T.B., Thoden, J.B., Baldwin, T.O., and Rayment, I. (1996). The 1.5-A resolution crystal structure of bacterial luciferase in low salt conditions. J Biol Chem 271, 21956-21968 8703001.
[28] Fogel, M., and Hastings, J.W. (1972). Bioluminescence: mechanism and mode of control of scintillon activity. Proc Natl Acad Sci U S A 69, 690-693 4501583.
[29] F?rster, T. (1960). Transfer mechanisms of electronic excitation energy. Radiat Res Suppl 2, 326-339 .
[30] Francisco, W.A., Abu-Soud, H.M., DelMonte, A.J., Singleton, D.A., Baldwin, T.O., and Raushel, F.M. (1998). Deuterium kinetic isotope effects and the mechanism of the bacterial luciferase reaction. Biochemistry 37, 2596-2606 9485410.
[31] Haddock, S.H.D., Moline, M.A., and Case, J.F. (2010). Bioluminescence in the sea. Ann Rev Mar Sci 2, 443-493 21141672.
[32] Hart, R.C., Matthews, J.C., Hori, K., and Cormier, M.J. (1979). Renilla reniformis bioluminescence: luciferase-catalyzed production of nonradiating excited states from luciferin analogues and elucidation of the excited state species involved in energy transfer to Renilla green fluorescent protein. Biochemistry 18, 2204-2210 36127.
[33] Harvey, E.N. (1952). Bioluminescence. New York: Academic Press, 649.
[34] Hastings, J.W., Eberhard, A., Baldwin, T.O., Nicoli, M.Z., Cline, T.W., and Nealson, K.H. (1973). Bacterial bioluminescence: Mechanistic implications of active center chemistry of luciferase. In: Bioluminescence and Chemiluminescence . Cormier M.J., Hercules D.M., and Lee J., eds. New York: Plenum Publishing Co. 369-380 .
[35] Hastings, J.W., and Gibson, Q.H. (1963). Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide. J Biol Chem 238, 2537-2554 13960925.
[36] Hastings, J.W., and Morin, J.G. (1969). Calcium-triggered light emission in Renilla. A unitary biochemical scheme for coelenterate bioluminescence. Biochem Biophys Res Commun 37, 493-498 4390730.
[37] Hastings, J.W., and Nealson, K.H. (1977). Bacterial bioluminescence. Annu Rev Microbiol 31, 549-595 199107.
[38] Head, J.F., Inouye, S., Teranishi, K., and Shimomura, O. (2000). The crystal structure of the photoprotein aequorin at 2.3 A resolution. Nature 405, 372-376 10830969.
[39] Holmquist, M. (2000). Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr Protein Pept Sci 1, 209-235 12369917.
[40] Inlow, J.K., and Baldwin, T.O. (2002). Mutational analysis of the subunit interface of Vibrio harveyi bacterial luciferase. Biochemistry 41, 3906-3915 11900533.
[41] Inouye, S. (2007). Expression, purification and characterization of calcium-triggered luciferin-binding protein of Renilla reniformis. Protein Expr Purif 52, 66-73 16997571.
[42] Inouye, S., and Tsuji, F.I. (1993). Cloning and sequence analysis of cDNA for the Ca(2+)-activated photoprotein, clytin. FEBS Lett 315, 343-346 8422928.
[43] Jeffers, C.E., Nichols, J.C., and Tu, S.-C. (2003). Complex formation between Vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase. Biochemistry 42, 529-534 12525181.
[44] Jones, S., and Thornton, J.M. (1996). Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93, 13-20 8552589.
[45] Karkhanis, Y.D., and Cormier, M.J. (1971). Isolation and properties of Renilla reniformis luciferase, a low molecular weight energy conversion enzyme. Biochemistry 10, 317-326 4395343.
[46] Kiel, C., Selzer, T., Shaul, Y., Schreiber, G., and Herrmann, C. (2004). Electrostatically optimized Ras-binding Ral guanine dissociation stimulator mutants increase the rate of association by stabilizing the encounter complex. Proc Natl Acad Sci U S A 101, 9223-9228 15197281.
[47] Kulinski, T., Visser, A.J., O’Kane, D.J., and Lee, J. (1987). Spectroscopic investigations of the single tryptophan residue and of riboflavin and 7-oxolumazine bound to lumazine apoprotein from Photobacterium leiognathi. Biochemistry 26, 540-549 3828324.
[48] Kumar, S., Harrylock, M., Walsh, K.A., Cormier, M.J., and Charbonneau, H. (1990). Amino acid sequence of the Ca2(+)-triggered luciferin binding protein of Renilla reniformis. FEBS Lett 268, 287-290 1974522.
[49] Lee, J. (1993). Lumazine protein and the excitation mechanism in bacterial bioluminescence. Biophys Chem 48, 149-158 8298053.
[50] Lee, J. (2008). Bioluminescence: the first 3000 years. [review] J Sib Fed U Biology 3, 194-205 .
[51] Lee, J., Gibson, B.G., O’Kane, D.J., Kohnle, A., and Bacher, A. (1992). Fluorescence study of the ligand stereospecificity for binding to lumazine protein. Eur J Biochem 210, 711-719 1483455.
[52] Lee, J., O’Kane, D.J., and Gibson, B.G. (1989). Bioluminescence spectral and fluorescence dynamics study of the interaction of lumazine protein with the intermediates of bacterial luciferase bioluminescence. Biochemistry 28, 4263-4271 2765486.
[53] Lee, J., O’Kane, D.J., and Visser, A.J. (1985). Spectral properties and function of two lumazine proteins from Photobacterium. Biochemistry 24, 1476-1483 3986186.
[54] Lee, J., Wang, Y.Y., and Gibson, B.G. (1991). Electronic excitation transfer in the complex of lumazine protein with bacterial bioluminescence intermediates. Biochemistry 30, 6825-6835 2069948.
[55] Levine, L.D., and Ward, W.W. (1982). Isolation and characterization of a photoprotein, “phialidin,” and a spectrally unique green-fluorescent protein from the bioluminescent jellyfish Phialidium gregarium. Comp Biochem Physiol B Biochem Mol Biol 72, 77-85 .
[56] Li, L., Liu, X., Yang, W., Xu, F., Wang, W., Feng, L., Bartlam, M., Wang, L., and Rao, Z. (2008). Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Biol 376, 453-465 18164311.
[57] Liao, D.I., Wawrzak, Z., Calabrese, J.C., Viitanen, P.V., and Jordan, D.B. (2001). Crystal structure of riboflavin synthase. Structure 9, 399-408 11377200.
[58] Liu, Z.-J., Stepanyuk, G.A., Vysotski, E.S., Lee, J., Markova, S.V., Malikova, N.P., and Wang, B.-C. (2006). Crystal structure of obelin after Ca2+-triggered bioluminescence suggests neutral coelenteramide as the primary excited state. Proc Natl Acad Sci U S A 103, 2570-2575 16467137.
[59] Liu, Z.-J., Vysotski, E.S., Chen, C.J., Rose, J.P., Lee, J., and Wang, B.-C. (2000). Structure of the Ca2+-regulated photoprotein obelin at 1.7 A resolution determined directly from its sulfur substructure. Protein Sci 9, 2085-2093 11152120.
[60] Lo Conte, L., Chothia, C., and Janin, J. (1999). The atomic structure of protein-protein recognition sites. J Mol Biol 285, 2177-2198 9925793.
[61] Loening, A.M., Fenn, T.D., and Gambhir, S.S. (2007). Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J Mol Biol 374, 1017-1028 17980388.
[62] Loening, A.M., Fenn, T.D., Wu, A.M., and Gambhir, S.S. (2006). Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19, 391-400 16857694.
[63] Lorenz, W.W., McCann, R.O., Longiaru, M., and Cormier, M.J. (1991). Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A 88, 4438-4442 1674607.
[64] Macheroux, P., Schmidt, K.U., Steinerstauch, P., Ghisla, S., Colepicolo, P., Buntic, R., and Hastings, J.W. (1987). Purification of the yellow fluorescent protein from Vibrio fischeri and identity of the flavin chromophore. Biochem Biophys Res Commun 146, 101-106 3606610.
[65] Malikova, N.P., Visser, N.V., van Hoek, A., Skakun, V.V., Vysotski, E.S., Lee, J., and Visser, A.J.W.G. (2011). Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria is an obligate dimer and does not form a stable complex with the Ca(2+)-discharged photoprotein clytin. Biochemistry 50, 4232-4241 .
[66] Markova, S.V., Burakova, L.P., Frank, L.A., Golz, S., Korostileva, K.A., and Vysotski, E.S. (2010). Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria: cDNA cloning, expression, and characterization of novel recombinant protein. Photochem Photobiol Sci 9, 757-765 20442953.
[67] Matheson, I.B.C., and Lee, J. (1983). Kinetics of bacterial bioluminescence and the fluorescent transient. Photochem Photobiol 38, 231-240 .
[68] Matthews, J.C., Hori, K., and Cormier, M.J. (1977a). Purification and properties of Renilla reniformis luciferase. Biochemistry 16, 85-91 12797.
[69] Matthews, J.C., Hori, K., and Cormier, M.J. (1977b). Substrate and substrate analogue binding properties of Renilla luciferase. Biochemistry 16, 5217-5220 21679.
[70] Morin, J.G., and Hastings, J.W. (1971). Energy transfer in a bioluminescent system. J Cell Physiol 77, 313-318 4397528.
[71] Morise, H., Shimomura, O., Johnson, F.H., and Winant, J. (1974). Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13, 2656-2662 4151620.
[72] Morse, D., Pappenheimer, A.M. Jr, and Hastings, J.W. (1989). Role of a luciferin-binding protein in the circadian bioluminescent reaction of Gonyaulax polyedra. J Biol Chem 264, 11822-11826 2745419.
[73] Nicolas, M.-T., Morse, D., Bassot, J.-M., and Hastings, J.W. (1991). Colocalization of luciferin binding protein and luciferase to the scintillons of Gonyaulax polyedra revealed by double immunolabeling after fast-freeze fixation. Protoplasma 160, 159-166 .
[74] O’Kane, D.J., Karle, V.A., and Lee, J. (1985). Purification of lumazine proteins from Photobacterium leiognathi and Photobacterium phosphoreum: bioluminescence properties. Biochemistry 24, 1461-1467 3986184.
[75] O’Kane, D.J., and Prasher, D.C. (1992). Evolutionary origins of bacterial bioluminescence. Mol Microbiol 6, 443-449 1560772.
[76] O’Kane, D.J., Woodward, B., Lee, J., and Prasher, D.C. (1991). Borrowed proteins in bacterial bioluminescence. Proc Natl Acad Sci U S A 88, 1100-1104 1996310.
[77] Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S.M., Harel, M., Remington, S.J., Silman, I., Schrag, J., (1992). The alpha/beta hydrolase fold. Protein Eng 5, 197-211 1409539.
[78] Orm?, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., and Remington, S.J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392-1395 8703075.
[79] Petushkov, V.N., Gibson, B.G., and Lee, J. (1995). The yellow bioluminescence bacterium, Vibrio fischeri Y1, contains a bioluminescence active riboflavin protein in addition to the yellow fluorescence FMN protein. Biochem Biophys Res Commun 211, 774-779 7598706.
[80] Petushkov, V.N., Gibson, B.G., and Lee, J. (1996a). Direct measurement of excitation transfer in the protein complex of bacterial luciferase hydroxyflavin and the associated yellow fluorescence proteins from Vibrio fischeri Y1. Biochemistry 35, 8413-8418 8679599.
[81] Petushkov, V.N., Ketelaars, M., Gibson, B.G., and Lee, J. (1996b). Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminescence effects of the aliphatic additive. Biochemistry 35, 12086-12093 8810914.
[82] Petushkov, V.N., and Lee, J. (1997). Purification and characterization of flavoproteins and cytochromes from the yellow bioluminescence marine bacterium Vibrio fischeri strain Y1. Eur J Biochem 245, 790-796 9183020.
[83] Prudêncio, M., and Ubbink, M. (2004). Transient complexes of redox proteins: structural and dynamic details from NMR studies. J Mol Recognit 17, 524-539 15386621.
[84] Reichmann, D., Rahat, O., Cohen, M., Neuvirth, H., and Schreiber, G. (2007). The molecular architecture of protein-protein binding sites. Curr Opin Struct Biol 17, 67-76 17239579.
[85] Remington, S.J. (2006). Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16, 714-721 17064887.
[86] Sato, Y., Shimizu, S., Ohtaki, A., Noguchi, K., Miyatake, H., Dohmae, N., Sasaki, S., Odaka, M., and Yohda, M. (2010). Crystal structures of the lumazine protein from Photobacterium kishitanii in complexes with the authentic chromophore, 6,7-dimethyl- 8-(1′-D-ribityl) lumazine, and its analogues, riboflavin and flavin mononucleotide, at high resolution. J Bacteriol 192, 127-133 19854891.
[87] Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., and Wolfson, H.J. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33, W363-W36715980490.
[88] Schreiber, G., Shaul, Y., and Gottschalk, K.E. (2006). Electrostatic design of protein-protein association rates. Methods Mol Biol 340, 235-249 16957340.
[89] Schultz, L.W., Liu, L., Cegielski, M., and Hastings, J.W. (2005). Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole. Proc Natl Acad Sci U S A 102, 1378-1383 15665092.
[90] Sheinerman, F.B., Norel, R., and Honig, B. (2000). Electrostatic aspects of protein-protein interactions. Curr Opin Struct Biol 10, 153-159 10753808.
[91] Shimomura, O. (1997). Membrane permeability of coelenterazine analogues measured with fish eggs. Biochem J 326, 297-298 9291095.
[92] Shimomura, O. (2006). Bioluminescence: chemical principles and methods. Singapore: World Scientific, 470.
[93] Shimomura, O., and Teranishi, K. (2000). Light-emitters involved in the luminescence of coelenterazine. Luminescence 15, 51-58 10660666.
[94] Sinclair, J.F., Waddle, J.J., Waddill, E.F., and Baldwin, T.O. (1993). Purified native subunits of bacterial luciferase are active in the bioluminescence reaction but fail to assemble into the alpha beta structure. Biochemistry 32, 5036-5044 8494880.
[95] Sparks, J.M., and Baldwin, T.O. (2001). Functional implications of the unstructured loop in the (beta/alpha)(8) barrel structure of the bacterial luciferase alpha subunit. Biochemistry 40, 15436-15443 11735428.
[96] Stepanyuk, G.A., Liu, Z.-J., Vysotski, E.S., Lee, J., Rose, J.P., and Wang, B.-C. (2009). Structure based mechanism of the Ca(2+)-induced release of coelenterazine from the Renilla binding protein. Proteins 74, 583-593 18655070.
[97] Titushin, M.S. (2009). Protein-protein interactions in the bioluminescence systems of coelenterates Renilla muelleri and Clytia gregaria. PhD thesis. Institute of Biophysics SB RAS, Krasnoyarsk 660036, Russia .
[98] Titushin, M.S., Feng, Y., Stepanyuk, G.A., Li, Y., Markova, S.V., Golz, S., Wang, B.-C., Lee, J., Wang, J., Vysotski, E.S., (2010). NMR-derived topology of a GFP-photoprotein energy transfer complex. J Biol Chem 285, 40891-40900 20926380.
[99] Titushin, M.S., Markova, S.V., Frank, L.A., Malikova, N.P., Stepanyuk, G.A., Lee, J., and Vysotski, E.S. (2008). Coelenterazine-binding protein of Renilla muelleri: cDNA cloning, overexpression, and characterization as a substrate of luciferase. Photochem Photobiol Sci 7, 189-196 18264586.
[100] Vaynberg, J., and Qin, J. (2006). Weak protein-protein interactions as probed by NMR spectroscopy. Trends Biotechnol 24, 22-27 16216358.
[101] Vervoort, J., O’Kane, D.J., Müller, F., Bacher, A., Strobl, G., and Lee, J. (1990). 13C and 15N NMR studies on the interaction between 6,7-dimethyl-8-ribityllumazine and lumazine protein. Biochemistry 29, 1823-1828 2331466.
[102] Visser, A.J., and Lee, J. (1982). Association between lumazine protein and bacterial luciferase: direct demonstration from the decay of the lumazine emission anisotropy. Biochemistry 21, 2218-2226 7093241.
[103] Visser, A.J., Hoek, A., Visser, N.V., Lee, Y., and Ghisla, S. (1997). Time-resolved fluorescence study of the dissociation of FMN from the yellow fluorescence protein from Vibrio fischeri. Photochem Photobiol 65, 570-575 .
[104] Vysotski, E.S., and Lee, J. (2007). Bioluminescent mechanism of Ca2+-regulated photoproteins from three-dimensional structures. In: Luciferases and Fluorescent Proteins: Principles and Advances in Biotechnology and Bioimaging . Viviani V.R. and Ohmiya Y., eds. Kerala, India: Transworld Research Network, 19-41 .
[105] Wachter, R.M. (2007). Chromogenic cross-link formation in green fluorescent protein. Acc Chem Res 40, 120-127 17309193.
[106] Wang, X., Lee, H.-W., Liu, Y., and Prestegard, J.H. (2011). Structural NMR of protein oligomers using hybrid methods. J Struct Biol 173, 515-529 21074622.
[107] Ward, W.W. (1979). Energy transfer processes in bioluminescence. In: Photochemical and Photobiological Reviews . Smith K.C., ed. New York: Plenum Press, 1-57 .
[108] Ward, W.W., and Cormier, M.J. (1976). In vitro energy transfer in Renilla bioluminescence. J Phys Chem 80, 2289-2291 .
[109] Ward, W.W., and Cormier, M.J. (1978). Energy transfer via protein-protein interaction in Renilla bioluminescence. Photochem Photobiol 27, 389-396 .
[110] Ward, W.W., and Cormier, M.J. (1979). An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green-fluorescent protein. J Biol Chem 254, 781-788 33175.
[111] Wilson, T., and Hastings, J.W. (1998). Bioluminescence. Annu Rev Cell Dev Biol 14, 197-230 9891783.
[112] Woo, J., Howell, M.H., and von Arnim, A.G. (2008). Structure-function studies on the active site of the coelenterazine-dependent luciferase from Renilla. Protein Sci 17, 725-735 18359861.
[113] Wu, P., and Brand, L. (1994). Resonance energy transfer: methods and applications. Anal Biochem 218, 1-13 8053542.
[114] Zuiderweg, E.R.P. (2002). Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 41, 1-7 11771996.
AI Summary AI Mindmap
PDF(1091 KB)

Accesses

Citations

Detail

Sections
Recommended

/