[1] Anderson, J.M., Charbonneau, H., and Cormier, M.J. (1974). Mechanism of calcium induction of Renilla bioluminescence. Involvement of a calcium-triggered luciferin binding protein.
Biochemistry 13, 1195-1200 4149963.
[2] Anderson, J.M., and Cormier, M.J. (1973). Lumisomes, the cellular site of bioluminescence in coelenterates.
J Biol Chem 248, 2937-2943 4144548.
[3] Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling.
Bioinformatics 22, 195-201 16301204.
[4] Baker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome
. Proc Natl Acad Sci USA 98, 10037-10041 .
[5] Baldwin, T.O., Treat, M.L., and Daubner, S.C. (1990). Cloning and expression of the luxY gene from Vibrio fischeri strain Y-1 in Escherichia coli and complete amino acid sequence of the yellow fluorescent protein.
Biochemistry 29, 5509-5515 2201407.
[6] Baldwin, T.O., and Ziegler, M.M. (1992). The biochemistry and molecular biology of bacterial bioluminescence
. In: Chemistry and Biochemistry of Flavoenzymes III . Mueller F., ed.
Boca Raton, Florida:
CRC Press, 467-530 .
[7] Berg, O.G., and von Hippel, P.H. (1985). Diffusion-controlled macromolecular interactions.
Annu Rev Biophys Biophys Chem 14, 131-160 3890878.
[8] Campbell, Z.T., Baldwin, T.O., and Miyashita, O. (2010). Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics.
Biophys J 99, 4012-4019 21156144.
[9] Campbell, Z.T., Weichsel, A., Montfort, W.R., and Baldwin, T.O. (2009). Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit.
Biochemistry 48, 6085-6094 19435287.
[10] Charbonneau, H., and Cormier, M.J. (1979). Ca2+-induced bioluminescence in Renilla reniformis. Purification and characterization of a calcium-triggered luciferin-binding protein.
J Biol Chem 254, 769-780 33174.
[11] Chatwell, L., Illarionova, V.A., Illarionov, B., Eisenreich, W., Huber, R., Skerra, A., Bacher, A., and Fischer, M. (2008). Structure of lumazine protein, an optical transponder of luminescent bacteria.
J Mol Biol 382, 44-55 18602927.
[12] Cormier, M.J. (1978). Comparative biochemistry of animal systems
. In: Bioluminescence in Action . Herring P.J., ed.
London:
Academic Press, 75-108 .
[13] Cormier, M.J., and Charbonneau, H. (1977). Isolation, properties and function of a calcium-triggered luciferin binding protein
. In: Calcium Binding Proteins and Calcium Function . Wasserman H.R., ed.
North-Holland:
Elsevier, 481-489 .
[14] Cormier, M.J., Hori, K., and Anderson, J.M. (1974). Bioluminescence in coelenterates.
Biochim Biophys Acta 346, 137-164 4154104.
[15] Cormier, M.J., Lee, J., and Wampler, J.E. (1975). Bioluminescence: recent advances.
Annu Rev Biochem 44, 255-272 237461.
[16] Cutler, M.W. (1995). Characterization and energy transfer mechanism of the green-fluorescent protein from Aequorea victoria. DissertationTip
, Rutgers University, New Brunswick, NJ .
[17] Cutler, M.W., and Ward, W.W. (1997). Spectral analysis and proposed model for GFP dimerization
. In: Bioluminescence and Chemiluminescence: Molecular Reporting with Photons . Hastings J.W., Kricka L.J., and Stanley P.E., eds.
New York:
Wiley-Liss, 596-599 .
[18] Daubner, S.C., Astorga, A.M., Leisman, G.B., and Baldwin, T.O. (1987). Yellow light emission of Vibrio fischeri strain Y-1: purification and characterization of the energy-accepting yellow fluorescent protein.
Proc Natl Acad Sci U S A 84, 8912-8916 3480518.
[19] de Vries, S.J., van Dijk, A.D.J., Krzeminski, M., van Dijk, M., Thureau, A., Hsu, V., Wassenaar, T., and Bonvin, A.M.J.J. (2007). HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets.
Proteins 69, 726-733 17803234.
[20] DeLuca, M., Dempsey, M.E., Hori, K., Wampler, J.E., and Cormier, M.J. (1971). Mechanism of oxidative carbon dioxide production during Renilla reniformis bioluminescence.
Proc Natl Acad Sci U S A 68, 1658-1660 4397765.
[21] Deng, L., Vysotski, E.S., Markova, S.V., Liu, Z.-J., Lee, J., Rose, J., and Wang, B.-C. (2005). All three Ca2+-binding loops of photoproteins bind calcium ions: the crystal structures of calcium-loaded apo-aequorin and apo-obelin.
Protein Sci 14, 663-675 15689515.
[22] Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., and Baker, N.A. (2004). PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
. Nucleic Acids Res 32, W665-W667 .
[23] Dominguez, C., Boelens, R., and Bonvin, A.M.J.J. (2003). HADDOCK: a protein-protein docking approach based on biochemical or biophysical information.
J Am Chem Soc 125, 1731-1737 12580598.
[24] Dunlap, K., Takeda, K., and Brehm, P. (1987). Activation of a calcium-dependent photoprotein by chemical signalling through gap junctions.
Nature 325, 60-62 2879248.
[25] Eckstein, J.W., Cho, K.W., Colepicolo, P., Ghisla, S., Hastings, J.W., and Wilson, T. (1990). A time-dependent bacterial bioluminescence emission spectrum in an in vitro single turnover system: energy transfer alone cannot account for the yellow emission of Vibrio fischeri Y-1.
Proc Natl Acad Sci U S A 87, 1466-1470 2304912.
[26] Fisher, A.J., Raushel, F.M., Baldwin, T.O., and Rayment, I. (1995). Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution.
Biochemistry 34, 6581-6586 7756289.
[27] Fisher, A.J., Thompson, T.B., Thoden, J.B., Baldwin, T.O., and Rayment, I. (1996). The 1.5-A resolution crystal structure of bacterial luciferase in low salt conditions.
J Biol Chem 271, 21956-21968 8703001.
[28] Fogel, M., and Hastings, J.W. (1972). Bioluminescence: mechanism and mode of control of scintillon activity.
Proc Natl Acad Sci U S A 69, 690-693 4501583.
[29] F?rster, T. (1960). Transfer mechanisms of electronic excitation energy.
Radiat Res Suppl 2, 326-339 .
[30] Francisco, W.A., Abu-Soud, H.M., DelMonte, A.J., Singleton, D.A., Baldwin, T.O., and Raushel, F.M. (1998). Deuterium kinetic isotope effects and the mechanism of the bacterial luciferase reaction.
Biochemistry 37, 2596-2606 9485410.
[31] Haddock, S.H.D., Moline, M.A., and Case, J.F. (2010). Bioluminescence in the sea.
Ann Rev Mar Sci 2, 443-493 21141672.
[32] Hart, R.C., Matthews, J.C., Hori, K., and Cormier, M.J. (1979). Renilla reniformis bioluminescence: luciferase-catalyzed production of nonradiating excited states from luciferin analogues and elucidation of the excited state species involved in energy transfer to Renilla green fluorescent protein.
Biochemistry 18, 2204-2210 36127.
[33] Harvey, E.N. (1952). Bioluminescence.
New York:
Academic Press, 649.
[34] Hastings, J.W., Eberhard, A., Baldwin, T.O., Nicoli, M.Z., Cline, T.W., and Nealson, K.H. (1973). Bacterial bioluminescence: Mechanistic implications of active center chemistry of luciferase
. In: Bioluminescence and Chemiluminescence . Cormier M.J., Hercules D.M., and Lee J., eds.
New York:
Plenum Publishing Co. 369-380 .
[35] Hastings, J.W., and Gibson, Q.H. (1963). Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide.
J Biol Chem 238, 2537-2554 13960925.
[36] Hastings, J.W., and Morin, J.G. (1969). Calcium-triggered light emission in Renilla. A unitary biochemical scheme for coelenterate bioluminescence.
Biochem Biophys Res Commun 37, 493-498 4390730.
[37] Hastings, J.W., and Nealson, K.H. (1977). Bacterial bioluminescence.
Annu Rev Microbiol 31, 549-595 199107.
[38] Head, J.F., Inouye, S., Teranishi, K., and Shimomura, O. (2000). The crystal structure of the photoprotein aequorin at 2.3 A resolution.
Nature 405, 372-376 10830969.
[39] Holmquist, M. (2000). Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms.
Curr Protein Pept Sci 1, 209-235 12369917.
[40] Inlow, J.K., and Baldwin, T.O. (2002). Mutational analysis of the subunit interface of Vibrio harveyi bacterial luciferase.
Biochemistry 41, 3906-3915 11900533.
[41] Inouye, S. (2007). Expression, purification and characterization of calcium-triggered luciferin-binding protein of Renilla reniformis.
Protein Expr Purif 52, 66-73 16997571.
[42] Inouye, S., and Tsuji, F.I. (1993). Cloning and sequence analysis of cDNA for the Ca(2+)-activated photoprotein, clytin.
FEBS Lett 315, 343-346 8422928.
[43] Jeffers, C.E., Nichols, J.C., and Tu, S.-C. (2003). Complex formation between Vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase.
Biochemistry 42, 529-534 12525181.
[44] Jones, S., and Thornton, J.M. (1996). Principles of protein-protein interactions.
Proc Natl Acad Sci U S A 93, 13-20 8552589.
[45] Karkhanis, Y.D., and Cormier, M.J. (1971). Isolation and properties of Renilla reniformis luciferase, a low molecular weight energy conversion enzyme.
Biochemistry 10, 317-326 4395343.
[46] Kiel, C., Selzer, T., Shaul, Y., Schreiber, G., and Herrmann, C. (2004). Electrostatically optimized Ras-binding Ral guanine dissociation stimulator mutants increase the rate of association by stabilizing the encounter complex.
Proc Natl Acad Sci U S A 101, 9223-9228 15197281.
[47] Kulinski, T., Visser, A.J., O’Kane, D.J., and Lee, J. (1987). Spectroscopic investigations of the single tryptophan residue and of riboflavin and 7-oxolumazine bound to lumazine apoprotein from Photobacterium leiognathi.
Biochemistry 26, 540-549 3828324.
[48] Kumar, S., Harrylock, M., Walsh, K.A., Cormier, M.J., and Charbonneau, H. (1990). Amino acid sequence of the Ca2(+)-triggered luciferin binding protein of Renilla reniformis.
FEBS Lett 268, 287-290 1974522.
[49] Lee, J. (1993). Lumazine protein and the excitation mechanism in bacterial bioluminescence.
Biophys Chem 48, 149-158 8298053.
[50] Lee, J. (2008). Bioluminescence: the first 3000 years
. [review] J Sib Fed U Biology 3, 194-205 .
[51] Lee, J., Gibson, B.G., O’Kane, D.J., Kohnle, A., and Bacher, A. (1992). Fluorescence study of the ligand stereospecificity for binding to lumazine protein.
Eur J Biochem 210, 711-719 1483455.
[52] Lee, J., O’Kane, D.J., and Gibson, B.G. (1989). Bioluminescence spectral and fluorescence dynamics study of the interaction of lumazine protein with the intermediates of bacterial luciferase bioluminescence.
Biochemistry 28, 4263-4271 2765486.
[53] Lee, J., O’Kane, D.J., and Visser, A.J. (1985). Spectral properties and function of two lumazine proteins from Photobacterium.
Biochemistry 24, 1476-1483 3986186.
[54] Lee, J., Wang, Y.Y., and Gibson, B.G. (1991). Electronic excitation transfer in the complex of lumazine protein with bacterial bioluminescence intermediates.
Biochemistry 30, 6825-6835 2069948.
[55] Levine, L.D., and Ward, W.W. (1982). Isolation and characterization of a photoprotein, “phialidin,” and a spectrally unique green-fluorescent protein from the bioluminescent jellyfish Phialidium gregarium.
Comp Biochem Physiol B Biochem Mol Biol 72, 77-85 .
[56] Li, L., Liu, X., Yang, W., Xu, F., Wang, W., Feng, L., Bartlam, M., Wang, L., and Rao, Z. (2008). Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase.
J Mol Biol 376, 453-465 18164311.
[57] Liao, D.I., Wawrzak, Z., Calabrese, J.C., Viitanen, P.V., and Jordan, D.B. (2001). Crystal structure of riboflavin synthase.
Structure 9, 399-408 11377200.
[58] Liu, Z.-J., Stepanyuk, G.A., Vysotski, E.S., Lee, J., Markova, S.V., Malikova, N.P., and Wang, B.-C. (2006). Crystal structure of obelin after Ca2+-triggered bioluminescence suggests neutral coelenteramide as the primary excited state.
Proc Natl Acad Sci U S A 103, 2570-2575 16467137.
[59] Liu, Z.-J., Vysotski, E.S., Chen, C.J., Rose, J.P., Lee, J., and Wang, B.-C. (2000). Structure of the Ca2+-regulated photoprotein obelin at 1.7 A resolution determined directly from its sulfur substructure.
Protein Sci 9, 2085-2093 11152120.
[60] Lo Conte, L., Chothia, C., and Janin, J. (1999). The atomic structure of protein-protein recognition sites.
J Mol Biol 285, 2177-2198 9925793.
[61] Loening, A.M., Fenn, T.D., and Gambhir, S.S. (2007). Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis.
J Mol Biol 374, 1017-1028 17980388.
[62] Loening, A.M., Fenn, T.D., Wu, A.M., and Gambhir, S.S. (2006). Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output.
Protein Eng Des Sel 19, 391-400 16857694.
[63] Lorenz, W.W., McCann, R.O., Longiaru, M., and Cormier, M.J. (1991). Isolation and expression of a cDNA encoding Renilla reniformis luciferase.
Proc Natl Acad Sci U S A 88, 4438-4442 1674607.
[64] Macheroux, P., Schmidt, K.U., Steinerstauch, P., Ghisla, S., Colepicolo, P., Buntic, R., and Hastings, J.W. (1987). Purification of the yellow fluorescent protein from Vibrio fischeri and identity of the flavin chromophore.
Biochem Biophys Res Commun 146, 101-106 3606610.
[65] Malikova, N.P., Visser, N.V., van Hoek, A., Skakun, V.V., Vysotski, E.S., Lee, J., and Visser, A.J.W.G. (2011). Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria is an obligate dimer and does not form a stable complex with the Ca(2+)-discharged photoprotein clytin
. Biochemistry 50, 4232-4241 .
[66] Markova, S.V., Burakova, L.P., Frank, L.A., Golz, S., Korostileva, K.A., and Vysotski, E.S. (2010). Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria: cDNA cloning, expression, and characterization of novel recombinant protein.
Photochem Photobiol Sci 9, 757-765 20442953.
[67] Matheson, I.B.C., and Lee, J. (1983). Kinetics of bacterial bioluminescence and the fluorescent transient.
Photochem Photobiol 38, 231-240 .
[68] Matthews, J.C., Hori, K., and Cormier, M.J. (1977a). Purification and properties of Renilla reniformis luciferase.
Biochemistry 16, 85-91 12797.
[69] Matthews, J.C., Hori, K., and Cormier, M.J. (1977b). Substrate and substrate analogue binding properties of Renilla luciferase.
Biochemistry 16, 5217-5220 21679.
[70] Morin, J.G., and Hastings, J.W. (1971). Energy transfer in a bioluminescent system.
J Cell Physiol 77, 313-318 4397528.
[71] Morise, H., Shimomura, O., Johnson, F.H., and Winant, J. (1974). Intermolecular energy transfer in the bioluminescent system of Aequorea.
Biochemistry 13, 2656-2662 4151620.
[72] Morse, D., Pappenheimer, A.M. Jr, and Hastings, J.W. (1989). Role of a luciferin-binding protein in the circadian bioluminescent reaction of Gonyaulax polyedra.
J Biol Chem 264, 11822-11826 2745419.
[73] Nicolas, M.-T., Morse, D., Bassot, J.-M., and Hastings, J.W. (1991). Colocalization of luciferin binding protein and luciferase to the scintillons of Gonyaulax polyedra revealed by double immunolabeling after fast-freeze fixation.
Protoplasma 160, 159-166 .
[74] O’Kane, D.J., Karle, V.A., and Lee, J. (1985). Purification of lumazine proteins from Photobacterium leiognathi and Photobacterium phosphoreum: bioluminescence properties.
Biochemistry 24, 1461-1467 3986184.
[75] O’Kane, D.J., and Prasher, D.C. (1992). Evolutionary origins of bacterial bioluminescence.
Mol Microbiol 6, 443-449 1560772.
[76] O’Kane, D.J., Woodward, B., Lee, J., and Prasher, D.C. (1991). Borrowed proteins in bacterial bioluminescence.
Proc Natl Acad Sci U S A 88, 1100-1104 1996310.
[77] Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S.M., Harel, M., Remington, S.J., Silman, I., Schrag, J.,
(1992). The alpha/beta hydrolase fold.
Protein Eng 5, 197-211 1409539.
[78] Orm?, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., and Remington, S.J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein.
Science 273, 1392-1395 8703075.
[79] Petushkov, V.N., Gibson, B.G., and Lee, J. (1995). The yellow bioluminescence bacterium, Vibrio fischeri Y1, contains a bioluminescence active riboflavin protein in addition to the yellow fluorescence FMN protein.
Biochem Biophys Res Commun 211, 774-779 7598706.
[80] Petushkov, V.N., Gibson, B.G., and Lee, J. (1996a). Direct measurement of excitation transfer in the protein complex of bacterial luciferase hydroxyflavin and the associated yellow fluorescence proteins from Vibrio fischeri Y1.
Biochemistry 35, 8413-8418 8679599.
[81] Petushkov, V.N., Ketelaars, M., Gibson, B.G., and Lee, J. (1996b). Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminescence effects of the aliphatic additive.
Biochemistry 35, 12086-12093 8810914.
[82] Petushkov, V.N., and Lee, J. (1997). Purification and characterization of flavoproteins and cytochromes from the yellow bioluminescence marine bacterium Vibrio fischeri strain Y1.
Eur J Biochem 245, 790-796 9183020.
[83] Prudêncio, M., and Ubbink, M. (2004). Transient complexes of redox proteins: structural and dynamic details from NMR studies.
J Mol Recognit 17, 524-539 15386621.
[84] Reichmann, D., Rahat, O., Cohen, M., Neuvirth, H., and Schreiber, G. (2007). The molecular architecture of protein-protein binding sites.
Curr Opin Struct Biol 17, 67-76 17239579.
[85] Remington, S.J. (2006). Fluorescent proteins: maturation, photochemistry and photophysics.
Curr Opin Struct Biol 16, 714-721 17064887.
[86] Sato, Y., Shimizu, S., Ohtaki, A., Noguchi, K., Miyatake, H., Dohmae, N., Sasaki, S., Odaka, M., and Yohda, M. (2010). Crystal structures of the lumazine protein from Photobacterium kishitanii in complexes with the authentic chromophore, 6,7-dimethyl- 8-(1′-D-ribityl) lumazine, and its analogues, riboflavin and flavin mononucleotide, at high resolution.
J Bacteriol 192, 127-133 19854891.
[87] Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., and Wolfson, H.J. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking.
Nucleic Acids Res 33, W363-W36715980490.
[88] Schreiber, G., Shaul, Y., and Gottschalk, K.E. (2006). Electrostatic design of protein-protein association rates.
Methods Mol Biol 340, 235-249 16957340.
[89] Schultz, L.W., Liu, L., Cegielski, M., and Hastings, J.W. (2005). Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole.
Proc Natl Acad Sci U S A 102, 1378-1383 15665092.
[90] Sheinerman, F.B., Norel, R., and Honig, B. (2000). Electrostatic aspects of protein-protein interactions.
Curr Opin Struct Biol 10, 153-159 10753808.
[91] Shimomura, O. (1997). Membrane permeability of coelenterazine analogues measured with fish eggs.
Biochem J 326, 297-298 9291095.
[92] Shimomura, O. (2006). Bioluminescence: chemical principles and methods.
Singapore:
World Scientific, 470.
[93] Shimomura, O., and Teranishi, K. (2000). Light-emitters involved in the luminescence of coelenterazine.
Luminescence 15, 51-58 10660666.
[94] Sinclair, J.F., Waddle, J.J., Waddill, E.F., and Baldwin, T.O. (1993). Purified native subunits of bacterial luciferase are active in the bioluminescence reaction but fail to assemble into the alpha beta structure.
Biochemistry 32, 5036-5044 8494880.
[95] Sparks, J.M., and Baldwin, T.O. (2001). Functional implications of the unstructured loop in the (beta/alpha)(8) barrel structure of the bacterial luciferase alpha subunit.
Biochemistry 40, 15436-15443 11735428.
[96] Stepanyuk, G.A., Liu, Z.-J., Vysotski, E.S., Lee, J., Rose, J.P., and Wang, B.-C. (2009). Structure based mechanism of the Ca(2+)-induced release of coelenterazine from the Renilla binding protein.
Proteins 74, 583-593 18655070.
[97] Titushin, M.S. (2009). Protein-protein interactions in the bioluminescence systems of coelenterates Renilla muelleri and Clytia gregaria. PhD thesis
. Institute of Biophysics SB RAS, Krasnoyarsk 660036, Russia .
[98] Titushin, M.S., Feng, Y., Stepanyuk, G.A., Li, Y., Markova, S.V., Golz, S., Wang, B.-C., Lee, J., Wang, J., Vysotski, E.S.,
(2010). NMR-derived topology of a GFP-photoprotein energy transfer complex.
J Biol Chem 285, 40891-40900 20926380.
[99] Titushin, M.S., Markova, S.V., Frank, L.A., Malikova, N.P., Stepanyuk, G.A., Lee, J., and Vysotski, E.S. (2008). Coelenterazine-binding protein of Renilla muelleri: cDNA cloning, overexpression, and characterization as a substrate of luciferase.
Photochem Photobiol Sci 7, 189-196 18264586.
[100] Vaynberg, J., and Qin, J. (2006). Weak protein-protein interactions as probed by NMR spectroscopy.
Trends Biotechnol 24, 22-27 16216358.
[101] Vervoort, J., O’Kane, D.J., Müller, F., Bacher, A., Strobl, G., and Lee, J. (1990). 13C and 15N NMR studies on the interaction between 6,7-dimethyl-8-ribityllumazine and lumazine protein.
Biochemistry 29, 1823-1828 2331466.
[102] Visser, A.J., and Lee, J. (1982). Association between lumazine protein and bacterial luciferase: direct demonstration from the decay of the lumazine emission anisotropy.
Biochemistry 21, 2218-2226 7093241.
[103] Visser, A.J., Hoek, A., Visser, N.V., Lee, Y., and Ghisla, S. (1997). Time-resolved fluorescence study of the dissociation of FMN from the yellow fluorescence protein from Vibrio fischeri
. Photochem Photobiol 65, 570-575 .
[104] Vysotski, E.S., and Lee, J. (2007). Bioluminescent mechanism of Ca2+-regulated photoproteins from three-dimensional structures
. In: Luciferases and Fluorescent Proteins: Principles and Advances in Biotechnology and Bioimaging . Viviani V.R. and Ohmiya Y., eds.
Kerala, India:
Transworld Research Network, 19-41 .
[105] Wachter, R.M. (2007). Chromogenic cross-link formation in green fluorescent protein.
Acc Chem Res 40, 120-127 17309193.
[106] Wang, X., Lee, H.-W., Liu, Y., and Prestegard, J.H. (2011). Structural NMR of protein oligomers using hybrid methods.
J Struct Biol 173, 515-529 21074622.
[107] Ward, W.W. (1979). Energy transfer processes in bioluminescence
. In: Photochemical and Photobiological Reviews . Smith K.C., ed.
New York:
Plenum Press, 1-57 .
[108] Ward, W.W., and Cormier, M.J. (1976). In vitro energy transfer in Renilla bioluminescence.
J Phys Chem 80, 2289-2291 .
[109] Ward, W.W., and Cormier, M.J. (1978). Energy transfer via protein-protein interaction in Renilla bioluminescence.
Photochem Photobiol 27, 389-396 .
[110] Ward, W.W., and Cormier, M.J. (1979). An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green-fluorescent protein.
J Biol Chem 254, 781-788 33175.
[111] Wilson, T., and Hastings, J.W. (1998). Bioluminescence.
Annu Rev Cell Dev Biol 14, 197-230 9891783.
[112] Woo, J., Howell, M.H., and von Arnim, A.G. (2008). Structure-function studies on the active site of the coelenterazine-dependent luciferase from Renilla.
Protein Sci 17, 725-735 18359861.
[113] Wu, P., and Brand, L. (1994). Resonance energy transfer: methods and applications.
Anal Biochem 218, 1-13 8053542.
[114] Zuiderweg, E.R.P. (2002). Mapping protein-protein interactions in solution by NMR spectroscopy.
Biochemistry 41, 1-7 11771996.