ERp44 C160S/C212S mutants regulate IP3R1 channel activity

Congyan Pan1, Ji Zheng2, Yanyun Wu1, Yingxiao Chen1, Likun Wang1, Zhansong Zhou2, Wenxuan Yin1(), Guangju Ji1()

PDF(346 KB)
PDF(346 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (12) : 990-996. DOI: 10.1007/s13238-011-1116-0
COMMUNICATION
COMMUNICATION

ERp44 C160S/C212S mutants regulate IP3R1 channel activity

  • Congyan Pan1, Ji Zheng2, Yanyun Wu1, Yingxiao Chen1, Likun Wang1, Zhansong Zhou2, Wenxuan Yin1(), Guangju Ji1()
Author information +
History +

Abstract

Previous studies have indicated that ERp44 inhibits inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release (IICR) via IP3R1, but the mechanism remains largely unexplored. Using extracellular ATP to induce intracellular calcium transient as an IICR model, Ca2+ image, pull down assay, and Western blotting experiments were carried out in the present study. We found that extracellular ATP induced calcium transient via IP3Rs (IICR) and the IICR were markedly decreased in ERp44 over-expressed Hela cells. The inhibitory effect of C160S/C212S but not C29S/T396A/ΔT(331--377) mutants of ERp44 on IICR were significantly decreased compared with ERp44. However, the binding capacity of ERp44 to L3V domain of IP3R1 (1L3V) was enhanced by ERp44 C160S/C212S mutation. Taken together, these results suggest that the mutants of ERp44, C160/C212, can more tightly bind to IP3R1 but exhibit a weak inhibition of IP3R1 channel activity in Hela cells.

Keywords

ERp44 / mutants / ATP / inositol 1,4,5- trisphosphate (IP3) receptors / calcium transient

Cite this article

Download citation ▾
Congyan Pan, Ji Zheng, Yanyun Wu, Yingxiao Chen, Likun Wang, Zhansong Zhou, Wenxuan Yin, Guangju Ji. ERp44 C160S/C212S mutants regulate IP3R1 channel activity. Prot Cell, 2011, 2(12): 990‒996 https://doi.org/10.1007/s13238-011-1116-0

References

[1] Alloza , I., Baxter , A., Chen , Q., Matthiesen , R., and Vandenbroeck , K. (2006). Celecoxib inhibits interleukin-12 alphabeta and beta2 folding and secretion by a novel COX2-independent mechanism involving chaperones of the endoplasmic reticulum. Mol Pharmacol 69, 1579-1587 16467190
[2] Anelli , T., Alessio , M., Bachi , A., Bergamelli , L., Bertoli , G., Camerini , S., Mezghrani , A., Ruffato , E., Simmen , T., and Sitia , R. (2003). Thiol-mediated protein retention in the endoplasmic reticulum: the role of ERp44. EMBO J 22, 5015-5022 14517240
[3] Anelli , T., Alessio , M., Mezghrani , A., Simmen , T., Talamo , F., Bachi , A., and Sitia , R. (2002). ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. EMBO J 21, 835-844 11847130
[4] Berridge , M.J. (1993). Inositol trisphosphate and calcium signalling. Nature 361, 315-325 8381210
[5] Berridge , M.J., Bootman , M.D., and Roderick , H.L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4, 517-529 12838335
[6] Berridge , M.J., Lipp , P., and Bootman , M.D. (2000). The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1, 11-21 11413485
[7] Boehning , D., Patterson , R.L., Sedaghat , L., Glebova , N.O., Kurosaki , T., and Snyder , S.H. (2003). Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5, 1051-1061 14608362
[8] Chen , Z., Li , Z., Peng , G., Chen , X., Yin , W., Kotlikoff , M.I., Yuan , Z.Q., and Ji , G. (2009). Extracellular ATP-induced nuclear Ca2+ transient is mediated by inositol 1,4,5-trisphosphate receptors in mouse pancreatic beta-cells. Biochem Biophys Res Commun 382, 381-384 19285037
[9] Cortini , M., and Sitia , R. (2010). From antibodies to adiponectin: role of ERp44 in sizing and timing protein secretion. Diabetes Obes Metab 12, 39-47 21029299
[10] Fischer , W., Appelt , K., Grohmann , M., Franke , H., N?renberg , W., and Illes , P. (2009). Increase of intracellular Ca2+ by P2X and P2Y receptor-subtypes in cultured cortical astroglia of the rat. Neuroscience 160, 767-783 19289154
[11] Fraldi , A., Zito , E., Annunziata , F., Lombardi , A., Cozzolino , M., Monti , M., Spampanato , C., Ballabio , A., Pucci , P., Sitia , R., (2008). Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44. Hum Mol Genet 17, 2610-2621 18508857
[12] Gerasimenko , O., and Gerasimenko , J. (2004). New aspects of nuclear calcium signalling. J Cell Sci 117, 3087-3094 15226390
[13] Hattori , M., Suzuki , A.Z., Higo , T., Miyauchi , H., Michikawa , T., Nakamura , T., Inoue , T., and Mikoshiba , K. (2004). Distinct roles of inositol 1,4,5-trisphosphate receptor types 1 and 3 in Ca2+ signaling. J Biol Chem 279, 11967-11975 14707143
[14] Higo , T., Hamada , K., Hisatsune , C., Nukina , N., Hashikawa , T., Hattori , M., Nakamura , T., and Mikoshiba , K. (2010). Mechanism of ER stress-induced brain damage by IP(3) receptor. Neuron 68, 865-878 21145001
[15] Higo , T., Hattori , M., Nakamura , T., Natsume , T., Michikawa , T., and Mikoshiba , K. (2005). Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120, 85-98 15652484
[16] Kang , S., Kang , J., Kwon , H., Frueh , D., Yoo , S.H., Wagner , G., and Park , S. (2008). Effects of redox potential and Ca2+ on the inositol 1,4,5-trisphosphate receptor L3-1 loop region: implications for receptor regulation. J Biol Chem 283, 25567-25575 18635540
[17] Li , G., Mongillo , M., Chin , K.T., Harding , H., Ron , D., Marks , A.R., and Tabas , I. (2009). Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol 186, 783-792 19752026
[18] Marciniak , S.J., Yun , C.Y., Oyadomari , S., Novoa , I., Zhang , Y., Jungreis , R., Nagata , K., Harding , H.P., and Ron , D. (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18, 3066-3077 15601821
[19] Otsu , M., Bertoli , G., Fagioli , C., Guerini-Rocco , E., Nerini-Molteni , S., Ruffato , E., and Sitia , R. (2006). Dynamic retention of Ero1alpha and Ero1beta in the endoplasmic reticulum by interactions with PDI and ERp44. Antioxid Redox Signal 8, 274-282 16677073
[20] Pan , C.Y., Zhou , R.B., Chen , Z., Chen , Y.X., Wu , Y.Y., Miao , L., Yin , W.X. and Ji GJ.(2011). ERp44 Mediates Gene Transcription via Inositol 1,4, 5-trisphosphate Receptors in Hela Cells . Prog Biochem Biophy [Epub ahead of print] . 2011Jun15.
[21] Patterson , R.L., Boehning , D., and Snyder , S.H. (2004). Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu Rev Biochem 73, 437-465 15189149
[22] Sabala , P., Czajkowski , R., Przyby?ek , K., Kalita , K., Kaczmarek , L., and Barańska , J. (2001). Two subtypes of G protein-coupled nucleotide receptors, P2Y(1) and P2Y(2) are involved in calcium signalling in glioma C6 cells. Br J Pharmacol 132, 393-402 11159687
[23] Thrower , E.C., Mobasheri , H., Dargan , S., Marius , P., Lea , E.J., and Dawson , A.P. (2000). Interaction of luminal calcium and cytosolic ATP in the control of type 1 inositol (1,4,5)-trisphosphate receptor channels. J Biol Chem 275, 36049-36055 10956640
[24] Tu , H., Wang , Z., Nosyreva , E., De Smedt , H., and Bezprozvanny , I. (2005). Functional characterization of mammalian inositol 1,4,5-trisphosphate receptor isoforms. Biophys J 88, 1046-1055 15533917
[25] Wang , L., Wang , L., Vavassori , S., Li , S., Ke , H., Anelli , T., Degano , M., Ronzoni , R., Sitia , R., Sun , F., (2008). Crystal structure of human ERp44 shows a dynamic functional modulation by its carboxy-terminal tail. EMBO Rep 9, 642-647 18552768
[26] Yamauchi , T., Kamon , J., Ito , Y., Tsuchida , A., Yokomizo , T., Kita , S., Sugiyama , T., Miyagishi , M., Hara , K., Tsunoda , M., (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762-769 12802337
AI Summary AI Mindmap
PDF(346 KB)

Accesses

Citations

Detail

Sections
Recommended

/