c-Jun, at the crossroad of the signaling network

Qinghang Meng, Ying Xia()

PDF(325 KB)
PDF(325 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (11) : 889-898. DOI: 10.1007/s13238-011-1113-3
REVIEW
REVIEW

c-Jun, at the crossroad of the signaling network

  • Qinghang Meng, Ying Xia()
Author information +
History +

Abstract

c-Jun, the most extensively studied protein of the activator protein-1 (AP-1) complex, is involved in numerous cell activities, such as proliferation, apoptosis, survival, tumorigenesis and tissue morphogenesis. Earlier studies focused on the structure and function have led to the identification of c-Jun as a basic leucine zipper (bZIP) transcription factor that acts as homo- or hetero-dimer, binding to DNA and regulating gene transcription. Later on, it was shown that extracellular signals can induce post-translational modifications of c-Jun, resulting in altered transcriptional activity and target gene expression. More recent work has uncovered multiple layers of a complex regulatory scheme in which c-Jun is able to crosstalk, amplify and integrate different signals for tissue development and disease. One example of such scheme is the autocrine amplification loop, in which signal-induced AP-1 activates the c-Jun gene promoter, while increased c-Jun expression feedbacks to potentiate AP-1 activity. Another example of such scheme, based on recent characterization of gene knockout mice, is that c-Jun integrates signals of several developmental pathways, including EGFR-ERK, EGFR-RhoA-ROCK, and activin B-MAP3K1-JNK for embryonic eyelid closure. After more than two decades of extensive research, c-Jun remains at the center stage of a molecular network with mysterious functional properties, some of which are yet to be discovered. In this article, we will provide a brief historical overview of studies on c-Jun regulation and function, and use eyelid development as an example to illustrate the complexity of c-Jun crosstalking with signaling pathways.

Keywords

mitogen-activated protein kinase kinase kinase 1 (MAP3K1) / c-Jun amino-terminal kinases (JNKs) / activator protein-1 (AP-1) / gene transcription / phosphorylation

Cite this article

Download citation ▾
Qinghang Meng, Ying Xia. c-Jun, at the crossroad of the signaling network. Prot Cell, 2011, 2(11): 889‒898 https://doi.org/10.1007/s13238-011-1113-3

References

[1] Adler, V., Polotskaya, A., Wagner, F., and Kraft, A.S. (1992). Affinity-purified c-Jun amino-terminal protein kinase requires serine/threonine phosphorylation for activity. J Biol Chem 267, 17001-17005 1324919.
[2] Angel, P., Allegretto, E.A., Okino, S.T., Hattori, K., Boyle, W.J., Hunter, T., and Karin, M. (1988a). Oncogene jun encodes a sequence-specific trans-activator similar to AP-1. Nature 332, 166-171 3347253.
[3] Angel, P., Hattori, K., Smeal, T., and Karin, M. (1988b). The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 55, 875-885 3142689.
[4] Angel, P., and Karin, M. (1991). The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072, 129-157 1751545.
[5] Atfi, A., Djelloul, S., Chastre, E., Davis, R., and Gespach, C. (1997). Evidence for a role of Rho-like GTPases and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor beta-mediated signaling. J Biol Chem 272, 1429-1432 8999807.
[6] Baker, S.J., Kerppola, T.K., Luk, D., Vandenberg, M.T., Marshak, D.R., Curran, T., and Abate, C. (1992). Jun is phosphorylated by several protein kinases at the same sites that are modified in serum-stimulated fibroblasts. Mol Cell Biol 12, 4694-4705 1328860.
[7] Behre, G., Whitmarsh, A.J., Coghlan, M.P., Hoang, T., Carpenter, C.L., Zhang, D.E., Davis, R.J., and Tenen, D.G. (1999). c-Jun is a JNK-independent coactivator of the PU.1 transcription factor. J Biol Chem 274, 4939-4946 9988737.
[8] Behrens, A., Jochum, W., Sibilia, M., and Wagner, E.F. (2000). Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene 19, 2657-2663 10851065.
[9] Behrens, A., Sibilia, M., and Wagner, E.F. (1999). Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21, 326-329 10080190.
[10] Bengal, E., Ransone, L., Scharfmann, R., Dwarki, V.J., Tapscott, S.J., Weintraub, H., and Verma, I.M. (1992). Functional antagonism between c-Jun and MyoD proteins: a direct physical association. Cell 68, 507-519 1310896.
[11] Biddie, S.C., John, S., Sabo, P.J., Thurman, R.E., Johnson, T.A., Schiltz, R.L., Miranda, T.B., Sung, M.H., Trump, S., Lightman, S.L., (2011). Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell 43, 145-155 21726817.
[12] Black, E.J., Street, A.J., and Gillespie, D.A. (1991). Protein phosphatase 2A reverses phosphorylation of c-Jun specified by the delta domain in vitro: correlation with oncogenic activation and deregulated transactivation activity of v-Jun. Oncogene 6, 1949-1958 1658706.
[13] Bohmann, D. (1990). Transcription factor phosphorylation: a link between signal transduction and the regulation of gene expression. Cancer Cells 2, 337-344 2149275.
[14] Bohmann, D., Bos, T.J., Admon, A., Nishimura, T., Vogt, P.K., and Tjian, R. (1987). Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science 238 , 1386-1392 .
[15] Bos, T.J., Bohmann, D., Tsuchie, H., Tjian, R., and Vogt, P.K. (1988). v-jun encodes a nuclear protein with enhancer binding properties of AP-1. Cell 52, 705-712 2830989.
[16] Boyle, W.J., Smeal, T., Defize, L.H., Angel, P., Woodgett, J.R., Karin, M., and Hunter, T. (1991). Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 64, 573-584 1846781.
[17] Chi, H., Sarkisian, M.R., Rakic, P., and Flavell, R.A. (2005). Loss of mitogen-activated protein kinase kinase kinase 4 (MEKK4) results in enhanced apoptosis and defective neural tube development. Proc Natl Acad Sci U S A 102, 3846-3851 15731347.
[18] Christerson, L.B., Vanderbilt, C.A., and Cobb, M.H. (1999). MEKK1 interacts with alpha-actinin and localizes to stress fibers and focal adhesions. Cell Motil Cytoskeleton 43, 186-198 10401575.
[19] Davis, R.J. (1994). MAPKs: new JNK expands the group. Trends Biochem Sci 19, 470-473 7855889.
[20] Deak, J.C., and Templeton, D.J. (1997). Regulation of the activity of MEK kinase 1 (MEKK1) by autophosphorylation within the kinase activation domain. Biochem J 322, 185-192 9078260.
[21] Dérijard, B., Hibi, M., Wu, I.H., Barrett, T., Su, B., Deng, T., Karin, M., and Davis, R.J. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025-1037 8137421.
[22] Devary, Y., Gottlieb, R.A., Lau, L.F., and Karin, M. (1991). Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol Cell Biol 11, 2804-2811 1901948.
[23] Diener, K., Wang, X.S., Chen, C., Meyer, C.F., Keesler, G., Zukowski, M., Tan, T.H., and Yao, Z. (1997). Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Proc Natl Acad Sci U S A 94, 9687-9692 9275185.
[24] Dumitru, C.D., Ceci, J.D., Tsatsanis, C., Kontoyiannis, D., Stamatakis, K., Lin, J.H., Patriotis, C., Jenkins, N.A., Copeland, N.G., Kollias, G., (2000). TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 103, 1071-1083 11163183.
[25] Ellenberger, T.E., Brandl, C.J., Struhl, K., and Harrison, S.C. (1992). The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell 71, 1223-1237 1473154.
[26] Findlater, G.S., McDougall, R.D., and Kaufman, M.H. (1993). Eyelid development, fusion and subsequent reopening in the mouse. J Anat 183, 121-129 8270467.
[27] Florin, L., Hummerich, L., Dittrich, B.T., Kokocinski, F., Wrobel, G., Gack, S., Schorpp-Kistner, M., Werner, S., Hahn, M., Lichter, P., (2004). Identification of novel AP-1 target genes in fibroblasts regulated during cutaneous wound healing. Oncogene 23, 7005-7017 15273721.
[28] Franklin, C.C., McCulloch, A.V., and Kraft, A.S. (1995). In vitro association between the Jun protein family and the general transcription factors, TBP and TFIIB. Biochem J 305, 967-974 7848298.
[29] Franklin, C.C., Sanchez, V., Wagner, F., Woodgett, J.R., and Kraft, A.S. (1992). Phorbol ester-induced amino-terminal phosphorylation of human JUN but not JUNB regulates transcriptional activation. Proc Natl Acad Sci U S A 89, 7247-7251 1496019.
[30] Gage, P.J., Qian, M., Wu, D., and Rosenberg, K.I. (2008). The canonical Wnt signaling antagonist DKK2 is an essential effector of PITX2 function during normal eye development. Dev Biol 317, 310-324 18367164.
[31] Gallagher, E.D., Gutowski, S., Sternweis, P.C., and Cobb, M.H. (2004). RhoA binds to the amino terminus of MEKK1 and regulates its kinase activity. J Biol Chem 279, 1872-1877 14581471.
[32] Geh, E., Meng, Q., Mongan, M., Wang, J., Takatori, A., Zheng, Y., Puga, A., Lang, R.A., and Xia, Y. (2011). Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) integrates developmental signals for eyelid closure. Proc Natl Acad Sci USA 108, 17349-17354 21178075.
[33] Grose, R. (2003). Epithelial migration: open your eyes to c-Jun. Curr Biol 13, R678-R680 12956972.
[34] Guo, Z., Clydesdale, G., Cheng, J., Kim, K., Gan, L., McConkey, D.J., Ullrich, S.E., Zhuang, Y., and Su, B. (2002). Disruption of Mekk2 in mice reveals an unexpected role for MEKK2 in modulating T-cell receptor signal transduction. Mol Cell Biol 22, 5761-5768 12138187.
[35] Hai, T.W., Liu, F., Allegretto, E.A., Karin, M., and Green, M.R. (1988). A family of immunologically related transcription factors that includes multiple forms of ATF and AP-1. Genes Dev 2, 1216-1226 3144478.
[36] Haluska, F.G., Huebner, K., Isobe, M., Nishimura, T., Croce, C.M., and Vogt, P.K. (1988). Localization of the human JUN protooncogene to chromosome region 1p31-32. Proc Natl Acad Sci U S A 85, 2215-2218 3127828.
[37] Harshman, K.D., Moye-Rowley, W.S., and Parker, C.S. (1988). Transcriptional activation by the SV40 AP-1 recognition element in yeast is mediated by a factor similar to AP-1 that is distinct from GCN4. Cell 53, 321-330 2834068.
[38] Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin, M. (1993). Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7, 2135-2148 8224842.
[39] Huang, J., Dattilo, L.K., Rajagopal, R., Liu, Y., Kaartinen, V., Mishina, Y., Deng, C.X., Umans, L., Zwijsen, A., Roberts, A.B., (2009). FGF-regulated BMP signaling is required for eyelid closure and to specify conjunctival epithelial cell fate. Development 136, 1741-1750 19369394.
[40] Hüser, M., Luckett, J., Chiloeches, A., Mercer, K., Iwobi, M., Giblett, S., Sun, X.M., Brown, J., Marais, R., and Pritchard, C. (2001). MEK kinase activity is not necessary for Raf-1 function. EMBO J 20, 1940-1951 11296227.
[41] Johnson, G.L., and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298 , 1911-1912 .
[42] Johnson, R.S., van Lingen, B., Papaioannou, V.E., and Spiegelman, B.M. (1993). A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev 7, 1309-1317 .
[43] Karin, M. (1991). Signal transduction and gene control. Curr Opin Cell Biol 3, 467-473 1832548.
[44] Karin, M., Liu, Z., and Zandi, E. (1997). AP-1 function and regulation. Curr Opin Cell Biol 9, 240-246 9069263.
[45] Kuan, C.Y., Yang, D.D., Samanta Roy, D.R., Davis, R.J., Rakic, P., and Flavell, R.A. (1999). The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667-676 10230788.
[46] Kyriakis, J.M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E.A., Ahmad, M.F., Avruch, J., and Woodgett, J.R. (1994). The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156-160 8177321.
[47] Lamph, W.W., Wamsley, P., Sassone-Corsi, P., and Verma, I.M. (1988). Induction of proto-oncogene JUN/AP-1 by serum and TPA. Nature 334, 629-631 2457172.
[48] Landschulz, W.H., Johnson, P.F., and McKnight, S.L. (1988). The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240 , 1759-1764 .
[49] Lange-Carter, C.A., Pleiman, C.M., Gardner, A.M., Blumer, K.J., and Johnson, G.L. (1993). A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260 , 315-319 .
[50] Lee, W., Mitchell, P., and Tjian, R. (1987). Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 49, 741-752 3034433.
[51] Li, G., Gustafson-Brown, C., Hanks, S.K., Nason, K., Arbeit, J.M., Pogliano, K., Wisdom, R.M., and Johnson, R.S. (2003). c-Jun is essential for organization of the epidermal leading edge. Dev Cell 4, 865-877 12791271.
[52] Li, M., Ge, Q., Wang, W., Wang, J., and Lu, Z. (2011). c-Jun binding site identification in K562 cells. J Genetics Genomics (Yi chuan xue bao) 38 , 235-242 .
[53] Lin, A., Frost, J., Deng, T., Smeal, T., al-Alawi, N., Kikkawa, U., Hunter, T., Brenner, D., and Karin, M. (1992). Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell 70, 777-789 1516134.
[54] Lin, A., Minden, A., Martinetto, H., Claret, F.X., Lange-Carter, C., Mercurio, F., Johnson, G.L., and Karin, M. (1995). Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268 , 286-290 .
[55] Luetteke, N.C., Qiu, T.H., Peiffer, R.L., Oliver, P., Smithies, O., and Lee, D.C. (1993). TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 73, 263-278 8477445.
[56] Maki, Y., Bos, T.J., Davis, C., Starbuck, M., and Vogt, P.K. (1987). Avian sarcoma virus 17 carries the jun oncogene. Proc Natl Acad Sci U S A 84, 2848-2852 3033666.
[57] McHenry, J.Z., Leon, A., Matthaei, K.I., and Cohen, D.R. (1998). Overexpression of fra-2 in transgenic mice perturbs normal eye development. Oncogene 17, 1131-1140 9764823.
[58] Minden, A., Lin, A., McMahon, M., Lange-Carter, C., Derijard, B., Davis, R.J., Johnson, G.L., and Karin, M. (1994). Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266 , 1719-1723 .
[59] Mine, N., Iwamoto, R., and Mekada, E. (2005). HB-EGF promotes epithelial cell migration in eyelid development. Development 132, 4317-4326 16141218.
[60] Mordret, G. (1993). MAP kinase kinase: a node connecting multiple pathways. Biology of the cell / under the auspices of the European Cell Biology Organization 79 , 193-207 .
[61] Nakamura, T., Datta, R., Kharbanda, S., and Kufe, D. (1991). Regulation of jun and fos gene expression in human monocytes by the macrophage colony-stimulating factor. Cell Growth Differ 2, 267-272 1712226.
[62] Naoe, H., Araki, K., Nagano, O., Kobayashi, Y., Ishizawa, J., Chiyoda, T., Shimizu, T., Yamamura, K., Sasaki, Y., Saya, H., (2010). The anaphase-promoting complex/cyclosome activator Cdh1 modulates Rho GTPase by targeting p190 RhoGAP for degradation. Mol Cell Biol 30, 3994-4005 20530197.
[63] Nikolakaki, E., Coffer, P.J., Hemelsoet, R., Woodgett, J.R., and Defize, L.H. (1993). Glycogen synthase kinase 3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells. Oncogene 8, 833-840 8384354.
[64] Papavassiliou, A.G., Chavrier, C., and Bohmann, D. (1992). Phosphorylation state and DNA-binding activity of c-Jun depend on the intracellular concentration of binding sites. Proc Natl Acad Sci U S A 89, 11562-11565 1454848.
[65] Pertovaara, L., Sistonen, L., Bos, T.J., Vogt, P.K., Keski-Oja, J., and Alitalo, K. (1989). Enhanced jun gene expression is an early genomic response to transforming growth factor beta stimulation. Mol Cell Biol 9, 1255-1262 2725496.
[66] Pomérance, M., Multon, M.C., Parker, F., Venot, C., Blondeau, J.P., Tocqué, B., and Schweighoffer, F. (1998). Grb2 interaction with MEK-kinase 1 is involved in regulation of Jun-kinase activities in response to epidermal growth factor. J Biol Chem 273, 24301-24304 9733714.
[67] Providence, K.M., and Higgins, P.J. (2004). PAI-1 expression is required for epithelial cell migration in two distinct phases of in vitro wound repair. J Cell Physiol 200, 297-308 15174100.
[68] Quantin, B., and Breathnach, R. (1988). Epidermal growth factor stimulates transcription of the c-jun proto-oncogene in rat fibroblasts. Nature 334, 538-539 3136398.
[69] Rauscher, F.J. 3rd, Cohen, D.R., Curran, T., Bos, T.J., Vogt, P.K., Bohmann, D., Tjian, R., and Franza, B.R. Jr. (1988a). Fos-associated protein p39 is the product of the jun proto-oncogene. Science 240 , 1010-1016 .
[70] Rauscher, F.J. 3rd, Voulalas, P.J., Franza, B.R. Jr, and Curran, T. (1988b). Fos and Jun bind cooperatively to the AP-1 site: reconstitution in vitro. Genes Dev 2, 1687-1699 2467839.
[71] Ryder, K., Lau, L.F., and Nathans, D. (1988). A gene activated by growth factors is related to the oncogene v-jun. Proc Natl Acad Sci U S A 85, 1487-1491 3422745.
[72] Ryder, K., and Nathans, D. (1988). Induction of protooncogene c-jun by serum growth factors. Proc Natl Acad Sci U S A 85, 8464-8467 3186736.
[73] Schlesinger, T.K., Fanger, G.R., Yujiri, T., and Johnson, G.L. (1998). The TAO of MEKK. Front Biosci 3, D1181-D1186 9820741.
[74] Schumacher, M.A., Goodman, R.H., and Brennan, R.G. (2000). The structure of a CREB bZIP.somatostatin CRE complex reveals the basis for selective dimerization and divalent cation-enhanced DNA binding. J Biol Chem 275, 35242-35247 10952992.
[75] Shaulian, E., and Karin, M. (2002). AP-1 as a regulator of cell life and death. Nat Cell Biol 4, E131-E136 11988758.
[76] Sherman, M.L., Stone, R.M., Datta, R., Bernstein, S.H., and Kufe, D.W. (1990). Transcriptional and post-transcriptional regulation of c-jun expression during monocytic differentiation of human myeloid leukemic cells. J Biol Chem 265, 3320-3323 2105946.
[77] Short, N.J. (1987). Regulation of transcription. Are some controlling factors more equal than others? Nature 326, 740-741 3033509.
[78] Siow, Y.L., Kalmar, G.B., Sanghera, J.S., Tai, G., Oh, S.S., and Pelech, S.L. (1997). Identification of two essential phosphorylated threonine residues in the catalytic domain of Mekk1. Indirect activation by Pak3 and protein kinase C. J Biol Chem 272, 7586-7594 9065412.
[79] Smeal, T., Binetruy, B., Mercola, D., Grover-Bardwick, A., Heidecker, G., Rapp, U.R., and Karin, M. (1992). Oncoprotein-mediated signalling cascade stimulates c-Jun activity by phosphorylation of serines 63 and 73. Mol Cell Biol 12, 3507-3513 1630458.
[80] Smeal, T., Binetruy, B., Mercola, D.A., Birrer, M., and Karin, M. (1991). Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354, 494-496 1749429.
[81] Soh, J.W., Mao, Y., Liu, L., Thompson, W.J., Pamukcu, R., and Weinstein, I.B. (2001). Protein kinase G activates the JNK1 pathway via phosphorylation of MEKK1. J Biol Chem 276, 16406-16410 11278263.
[82] Su, Y.C., Han, J., Xu, S., Cobb, M., and Skolnik, E.Y. (1997). NIK is a new Ste20-related kinase that binds NCK and MEKK1 and activates the SAPK/JNK cascade via a conserved regulatory domain. EMBO J 16, 1279-1290 9135144.
[83] Sutherland, C., Renaux, B.S., McKay, D.J., and Walsh, M.P. (1994). Phosphorylation of caldesmon by smooth-muscle casein kinase II. J Muscle Res Cell Motil 15, 440-456 7806638.
[84] Takatori, A., Geh, E., Chen, L., Zhang, L., Meller, J., and Xia, Y. (2008). Differential transmission of MEKK1 morphogenetic signals by JNK1 and JNK2. Development 135, 23-32 18032450.
[85] Thumkeo, D., Shimizu, Y., Sakamoto, S., Yamada, S., and Narumiya, S. (2005). ROCK-I and ROCK-II cooperatively regulate closure of eyelid and ventral body wall in mouse embryo. Genes Cells 10, 825-834 16098146.
[86] Tobiume, K., Matsuzawa, A., Takahashi, T., Nishitoh, H., Morita, K., Takeda, K., Minowa, O., Miyazono, K., Noda, T., and Ichijo, H. (2001). ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2, 222-228 11266364.
[87] Toda, T., Shimanuki, M., and Yanagida, M. (1991). Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes Dev 5, 60-73 1899230.
[88] Uda, M., Ottolenghi, C., Crisponi, L., Garcia, J.E., Deiana, M., Kimber, W., Forabosco, A., Cao, A., Schlessinger, D., and Pilia, G. (2004). Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 13, 1171-1181 15056605.
[89] Wagner, E.F., Schonthaler, H.B., Guinea-Viniegra, J., and Tschachler, E. (2010). Psoriasis: what we have learned from mouse models. Nat Rev Rheumatol 6 , 704-714 .
[90] Wolter, S., Doerrie, A., Weber, A., Schneider, H., Hoffmann, E., von der Ohe, J., Bakiri, L., Wagner, E.F., Resch, K., and Kracht, M. (2008). c-Jun controls histone modifications, NF-kappaB recruitment, and RNA polymerase II function to activate the ccl2 gene. Mol Cell Biol 28, 4407-4423 18443042.
[91] Xia, Y., Wu, Z., Su, B., Murray, B., and Karin, M. (1998). JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension. Genes Dev 12, 3369-3381 9808624.
[92] Xu, S., Robbins, D.J., Christerson, L.B., English, J.M., Vanderbilt, C.A., and Cobb, M.H. (1996). Cloning of rat MEK kinase 1 cDNA reveals an endogenous membrane-associated 195-kDa protein with a large regulatory domain. Proc Natl Acad Sci U S A 93, 5291-5295 8643568.
[93] Yan, M., Dai, T., Deak, J.C., Kyriakis, J.M., Zon, L.I., Woodgett, J.R., and Templeton, D.J. (1994). Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature 372, 798-800 7997270.
[94] Yang, J., Boerm, M., McCarty, M., Bucana, C., Fidler, I.J., Zhuang, Y., and Su, B. (2000). Mekk3 is essential for early embryonic cardiovascular development. Nat Genet 24, 309-313 10700190.
[95] Yu, Z., Bhandari, A., Mannik, J., Pham, T., Xu, X., and Andersen, B. (2008). Grainyhead-like factor Get1/Grhl3 regulates formation of the epidermal leading edge during eyelid closure. Dev Biol 319, 56-67 18485343.
[96] Yujiri, T., Ware, M., Widmann, C., Oyer, R., Russell, D., Chan, E., Zaitsu, Y., Clarke, P., Tyler, K., Oka, Y., (2000). MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-kappa B activation. Proc Natl Acad Sci U S A 97, 7272-7277 10852963.
[97] Zenz, R., Scheuch, H., Martin, P., Frank, C., Eferl, R., Kenner, L., Sibilia, M., and Wagner, E.F. (2003). c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. Dev Cell 4, 879-889 12791272.
[98] Zhang, L., Deng, M., Parthasarathy, R., Wang, L., Mongan, M., Molkentin, J.D., Zheng, Y., and Xia, Y. (2005). MEKK1 transduces activin signals in keratinocytes to induce actin stress fiber formation and migration. Mol Cell Biol 25, 60-65 15601830.
[99] Zhang, L., Wang, W., Hayashi, Y., Jester, J.V., Birk, D.E., Gao, M., Liu, C.Y., Kao, W.W., Karin, M., and Xia, Y. (2003). A role for MEK kinase 1 in TGF-beta/activin-induced epithelium movement and embryonic eyelid closure. EMBO J 22, 4443-4454 12941696.
[100] Zhang, Y., Neo, S.Y., Wang, X., Han, J., and Lin, S.C. (1999). Axin forms a complex with MEKK1 and activates c-Jun NH(2)-terminal kinase/stress-activated protein kinase through domains distinct from Wnt signaling. J Biol Chem 274, 35247-35254 10575011
AI Summary AI Mindmap
PDF(325 KB)

Accesses

Citations

Detail

Sections
Recommended

/