Genetic engineering and enzyme research in lignocellulosic ethanol production

Elizabeth Jane Ashforth()

PDF(53 KB)
PDF(53 KB)
Protein Cell ›› DOI: 10.1007/s13238-011-1108-0
NEWS AND VIEWS
NEWS AND VIEWS

Genetic engineering and enzyme research in lignocellulosic ethanol production

  • Elizabeth Jane Ashforth()
Author information +
History +

Cite this article

Download citation ▾
Elizabeth Jane Ashforth. Genetic engineering and enzyme research in lignocellulosic ethanol production. Prot Cell, https://doi.org/10.1007/s13238-011-1108-0

References

[1] Brown, S.D., Guss, A.M., Karpinets, T.V., Parks, J.M., Smolin, N., Yang, S., Land, M.L., Klingeman, D.M., Bhandiwad, A., Rodriguez, M. Jr, (2011). Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum.Proc Natl Acad Sci U S A 108, 13752-13757 21825121.
[2] Kim, M.H., Liang, M., He, Q., and Wang, J. (2011). Pseudo-continuous fermentation using a novel bioreactor to facilitate the study of a co-culture system for ethanol production. AIChE 2011 Annual Meeting. Minneapolis Convention Center, Food, Pharmaceutical & Bioengineering Division. Wednesday, October 19, 2011. Online abstract . (http://aiche.confex.com/aiche/2011/webprogram/Paper234217.html).
[3] Li, Y., Park, J.Y., Shiroma, R., and Tokuyasu, K. (2011). Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation.J Biosci Bioeng 111, 682-686 21397557.
[4] Li, Y., Zhang, Z., Lei, Z., Yang, Y., Utsumi, M., and Sugiura, N. (2009). Influence of metal addition on ethanol production with Pichia stipitis ATCC 58784.J Ind Microbiol Biotechnol 36, 491-497 19112585.
[5] Parawira, W., and Tekere, M. (2011). Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.[review] Crit Rev Biotechnol 31, 20-31 20513164.
[6] Rastogi, G., Muppidi, G.L., Gurram, R.N., Adhikari, A., Bischoff, K.M., Hughes, S.R., Apel, W.A., Bang, S.S., Dixon, D.J., and Sani, R.K. (2009). Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA.J Ind Microbiol Biotechnol 36, 585-598 19189143.
[7] Sakamoto, T., Hasunuma, T., Hori, Y.,Yamada, R., and Kondo, A. (2011). Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol [epub ahead of print] 29 June 2011.10.1016/j.jbiotec.2011.06.025.
[8] Yamada, R,. Taniguchi, N,. Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. (2011). Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels [epub ahead of print] 15 April 2011.10.1186/1754-6834-4-8.
[9] Yanase, S., Hasunuma, T., Yamada, R., Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. (2010). Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes.Appl Microbiol Biotechnol 88, 381-388 20676628.
AI Summary AI Mindmap
PDF(53 KB)

Accesses

Citations

Detail

Sections
Recommended

/