Structural insight into substrate specificity of human intestinal maltase-glucoamylase

Limei Ren1,2, Xiaohong Qin1,3, Xiaofang Cao1,2, Lele Wang1,3, Fang Bai2, Gang Bai1,2(), Yuequan Shen1,3()

PDF(633 KB)
PDF(633 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (10) : 827-836. DOI: 10.1007/s13238-011-1105-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Structural insight into substrate specificity of human intestinal maltase-glucoamylase

  • Limei Ren1,2, Xiaohong Qin1,3, Xiaofang Cao1,2, Lele Wang1,3, Fang Bai2, Gang Bai1,2(), Yuequan Shen1,3()
Author information +
History +

Abstract

Human maltase-glucoamylase (MGAM) hydrolyzes linear alpha-1,4-linked oligosaccharide substrates, playing a crucial role in the production of glucose in the human lumen and acting as an efficient drug target for type 2 diabetes and obesity. The amino- and carboxyl-terminal portions of MGAM (MGAM-N and MGAM-C) carry out the same catalytic reaction but have different substrate specificities. In this study, we report crystal structures of MGAM-C alone at a resolution of 3.1 ?, and in complex with its inhibitor acarbose at a resolution of 2.9 ?. Structural studies, combined with biochemical analysis, revealed that a segment of 21 amino acids in the active site of MGAM-C forms additional sugar subsites (+2 and+3 subsites), accounting for the preference for longer substrates of MAGM-C compared with that of MGAM-N. Moreover, we discovered that a single mutation of Trp1251 to tyrosine in MGAM-C imparts a novel catalytic ability to digest branched alpha-1,6-linked oligosaccharides. These results provide important information for understanding the substrate specificity of alpha-glucosidases during the process of terminal starch digestion, and for designing more efficient drugs to control type 2 diabetes or obesity.

Keywords

MGAM C-terminal domain / inhibitor / crystal structure / acarbose / type 2 diabetes

Cite this article

Download citation ▾
Limei Ren, Xiaohong Qin, Xiaofang Cao, Lele Wang, Fang Bai, Gang Bai, Yuequan Shen. Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Prot Cell, 2011, 2(10): 827‒836 https://doi.org/10.1007/s13238-011-1105-3

References

[1] Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213–221 20124702.
[2] Brayer, G.D., Luo, Y., and Withers, S.G. (1995). The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci 4, 1730–1742 8528071.
[3] Brayer, G.D., Sidhu, G., Maurus, R., Rydberg, E.H., Braun, C., Wang, Y., Nguyen, N.T., Overall, C.M., and Withers, S.G. (2000). Subsite mapping of the human pancreatic alpha-amylase active site through structural, kinetic, and mutagenesis techniques. Biochemistry 39, 4778–4791 10769135.
[4] Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905–921 9757107.
[5] Cowell, G.M., Tranum-Jensen, J., Sj?str?m, H., and Norén, O. (1986). Topology and quaternary structure of pro-sucrase/isomaltase and final-form sucrase/isomaltase. Biochem J 237, 455–461 3800897.
[6] Dahlqvist, A., and Telenius, U. (1969). Column chromatography of human small-intestinal maltase, isomaltase and invertase activities. Biochem J 111, 139–146 5763786.
[7] Danielsen, E.M. (1994). Dimeric assembly of enterocyte brush border enzymes. Biochemistry 33, 1599–1605 7906143.
[8] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126–2132 15572765.
[9] Ernst, H.A., Lo Leggio, L., Willemo?s, M., Leonard, G., Blum, P., and Larsen, S. (2006). Structure of the Sulfolobus solfataricus alpha-glucosidase: implications for domain conservation and substrate recognition in GH31. J Mol Biol 358, 1106–1124 16580018.
[10] Gray, G.M., Lally, B.C., and Conklin, K.A. (1979). Action of intestinal sucrase-isomaltase and its free monomers on an alpha-limit dextrin. J Biol Chem 254, 6038–6043 16580018.
[11] Heymann, H., Breitmeier, D., and Günther, S. (1995). Human small intestinal sucrase-isomaltase: different binding patterns for malto- and isomaltooligosaccharides. Biol Chem Hoppe Seyler 376, 249–253 7626234.
[12] Jenkins, D.J., Taylor, R.H., Goff, D.V., Fielden, H., Misiewicz, J.J., Sarson, D.L., Bloom, S.R., and Alberti, K.G. (1981). Scope and specificity of acarbose in slowing carbohydrate absorption in man. Diabetes 30, 951–954 7028548.
[13] Lee, B., and Richards, F.M. (1971). The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55, 379–400 5551392.
[14] Low, L.C. (2010). The epidemic of type 2 diabetes mellitus in the Asia-Pacific region. Pediatr Diabetes 11, 212–215 20618742.
[15] McCoy, A.J. (2007). Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D Biol Crystallogr 63, 32–41 17164524.
[16] Nichols, B.L., Avery, S., Sen, P., Swallow, D.M., Hahn, D., and Sterchi, E. (2003). The maltase-glucoamylase gene: common ancestry to sucrase-isomaltase with complementary starch digestion activities. Proc Natl Acad Sci U S A 100, 1432–1437 12547908.
[17] Nichols, B.L., Eldering, J., Avery, S., Hahn, D., Quaroni, A., and Sterchi, E. (1998). Human small intestinal maltase-glucoamylase cDNA cloning. Homology to sucrase-isomaltase. J Biol Chem 273, 3076–3081 9446624.
[18] Nichols, B.L., Quezada-Calvillo, R., Robayo-Torres, C.C., Ao, Z., Hamaker, B.R., Butte, N.F., Marini, J., Jahoor, F., and Sterchi, E.E. (2009). Mucosal maltase-glucoamylase plays a crucial role in starch digestion and prandial glucose homeostasis of mice. J Nutr 139, 684–690 19193815.
[19] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol 276, 307–326 .
[20] Qin, X., Ren, L., Yang, X., Bai, F., Wang, L., Geng, P., Bai, G., and Shen, Y. (2011). Structures of human pancreatic α-amylase in complex with acarviostatins: Implications for drug design against type II diabetes. J Struct Biol 174, 196–202 21111049.
[21] Quezada-Calvillo, R., Robayo-Torres, C.C., Opekun, A.R., Sen, P., Ao, Z., Hamaker, B.R., Quaroni, A., Brayer, G.D., Wattler, S., Nehls, M.C., (2007). Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis. J Nutr 137, 1725–1733 17585022.
[22] Quezada-Calvillo, R., Sim, L., Ao, Z., Hamaker, B.R., Quaroni, A., Brayer, G.D., Sterchi, E.E., Robayo-Torres, C.C., Rose, D.R., and Nichols, B.L. (2008). Luminal starch substrate “brake” on maltase-glucoamylase activity is located within the glucoamylase subunit. J Nutr 138, 685–692 18356321.
[23] Rabasa-Lhoret, R., and Chiasson, J.L. (1998). Potential of alpha-glucosidase inhibitors in elderly patients with diabetes mellitus and impaired glucose tolerance. Drugs Aging 13, 131–143 9739502.
[24] Rossi, E.J., Sim, L., Kuntz, D.A., Hahn, D., Johnston, B.D., Ghavami, A., Szczepina, M.G., Kumar, N.S., Sterchi, E.E., Nichols, B.L., (2006). Inhibition of recombinant human maltase glucoamylase by salacinol and derivatives. FEBS J 273, 2673–2683 16817895.
[25] Semenza, G. (1986). Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocytes and renal tubuli. Annu Rev Cell Biol 2, 255–313 3548768.
[26] Sim, L., Quezada-Calvillo, R., Sterchi, E.E., Nichols, B.L., and Rose, D.R. (2008). Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol 375, 782–792 18036614.
[27] Sim, L., Willemsma, C., Mohan, S., Naim, H.Y., Pinto, B.M., and Rose, D.R. (2010). Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J Biol Chem 285, 17763–17770 20356844.
[28] Van Beers, E.H., Büller, H.A., Grand, R.J., Einerhand, A.W., and Dekker, J. (1995). Intestinal brush border glycohydrolases: structure, function, and development. Crit Rev Biochem Mol Biol 30, 197–262 7555019.
AI Summary AI Mindmap
PDF(633 KB)

Accesses

Citations

Detail

Sections
Recommended

/