[1] Aubert, S., Gout, E., Bligny, R., Marty-Mazars, D., Barrieu, F., Alabouvette, J., Marty, F., and Douce, R. (1996). Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates.
J Cell Biol 133, 1251-1263 8682862.
[2] Avin-Wittenberg, T., Honig, A., and Galili, G. (2011). Variations on a theme: plant autophagy in comparison to yeast and mammals.
Protoplasma 248, 439-446 20830494.
[3] Barth, H., Meiling-Wesse, K., Epple, U.D., and Thumm, M. (2001). Autophagy and the cytoplasm to vacuole targeting pathway both require Aut10p.
FEBS Lett 508, 23-28 11707261.
[4] Bassham, D.C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L.J., and Yoshimoto, K. (2006). Autophagy in development and stress responses of plants.
Autophagy 2, 2-11 16874030.
[5] Chen, Y., Azad, M.B., and Gibson, S.B. (2009). Superoxide is the major reactive oxygen species regulating autophagy.
Cell Death Differ 16, 1040-1052 19407826.
[6] Chung, T., Suttangkakul, A., and Vierstra, R.D. (2009). The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability.
Plant Physiol 149, 220-234 18790996.
[7] Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S., and Ohsumi, Y. (2002). Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene.
Plant Physiol 129, 1181-1193 12114572.
[8] Hayward, A.P., and Dinesh-Kumar, S.P. (2011). What can plant autophagy do for an innate immune response?
Annu Rev Phytopathol 49, 557-576 21370973.
[9] He, C., and Levine, B. (2010). The Beclin 1 interactome.
Curr Opin Cell Biol 22, 140-149 20097051.
[10] Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D.I., Petersen, N.H., Mattsson, O., J?rgensen, L.B., Jones, J.D., Mundy, J., and Petersen, M. (2009). Autophagic components contribute to hypersensitive cell death in Arabidopsis.
Cell 137, 773-783 19450522.
[11] Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M.,
(2000). A ubiquitin-like system mediates protein lipidation.
Nature 408, 488-492 11100732.
[12] Ishida, H., Yoshimoto, K., Izumi, M., Reisen, D., Yano, Y., Makino, A., Ohsumi, Y., Hanson, M.R., and Mae, T. (2008). Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process.
Plant Physiol 148, 142-155 18614709.
[13] Kanki, T., Wang, K., Cao, Y., Baba, M., and Klionsky, D.J. (2009). Atg32 is a mitochondrial protein that confers selectivity during mitophagy.
Dev Cell 17, 98-109 19619495.
[14] Klionsky, D.J. (2005). The molecular machinery of autophagy: unanswered questions.
J Cell Sci 118, 7-18 15615779.
[15] Klionsky, D.J. (2007). Autophagy: from phenomenology to molecular understanding in less than a decade.
Nat Rev Mol Cell Biol 8, 931-937 17712358.
[16] Klionsky, D.J., Cregg, J.M., Dunn, W.A. Jr, Emr, S.D., Sakai, Y., Sandoval, I.V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M.,
(2003). A unified nomenclature for yeast autophagy-related genes.
Dev Cell 5, 539-545 14536056.
[17] Klionsky, D.J., and Ohsumi, Y. (1999). Vacuolar import of proteins and organelles from the cytoplasm.
Annu Rev Cell Dev Biol 15, 1-32 10611955.
[18] Kroemer, G., Mari?o, G., and Levine, B. (2010). Autophagy and the integrated stress response.
Mol Cell 40, 280-293 20965422.
[19] Kwon, S.I., Cho, H.J., Jung, J.H., Yoshimoto, K., Shirasu, K., and Park, O.K. (2010). The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis.
Plant J 64, 151-164 20659276.
[20] Lai, Z., Wang, F., Zheng, Z., Fan, B., and Chen, Z. (2011). A critical role of autophagy in plant resistance to necrotrophic fungal pathogens.
Plant J 66, 953-968 21395886.
[21] Lenz, H.D., Haller, E., Melzer, E., Kober, K., Wurster, K., Stahl, M., Bassham, D.C., Vierstra, R.D., Parker, J.E., Bautor, J.,
(2011). Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens.
Plant J 66, 818-830 21332848.
[22] Liu, Y., and Bassham, D.C. (2010). TOR is a negative regulator of autophagy in Arabidopsis thaliana.
PLoS One 5, e1188320686696.
[23] Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., and Dinesh-Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response.
Cell 121, 567-577 15907470.
[24] Liu, Y., Xiong, Y., and Bassham, D.C. (2009). Autophagy is required for tolerance of drought and salt stress in plants.
Autophagy 5, 954-963 19587533.
[25] Meijer, W.H., van der Klei, I.J., Veenhuis, M., and Kiel, J.A. (2007). ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes.
Autophagy 3, 106-116 17204848.
[26] Menand, B., Desnos, T., Nussaume, L., Berger, F., Bouchez, D., Meyer, C., and Robaglia, C. (2002). Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene.
Proc Natl Acad Sci U S A 99, 6422-6427 11983923.
[27] Menzies, F.M., Moreau, K., and Rubinsztein, D.C. (2011). Protein misfolding disorders and macroautophagy.
Curr Opin Cell Biol 23, 190-197 21087849.
[28] Nakatogawa, H., Suzuki, K., Kamada, Y., and Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast.
Nat Rev Mol Cell Biol 10, 458-467 19491929.
[29] Noctor, G., and Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control.
Annu Rev Plant Physiol Plant Mol Biol 49, 249-279 15012235.
[30] Okamoto, K., Kondo-Okamoto, N., and Ohsumi, Y. (2009). Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy.
Dev Cell 17, 87-97 19619494.
[31] Patel, S., and Dinesh-Kumar, S.P. (2008). Arabidopsis ATG6 is required to limit the pathogen-associated cell death response.
Autophagy 4, 20-27 17932459.
[32] Rose, T.L., Bonneau, L., Der, C., Marty-Mazars, D., and Marty, F. (2006). Starvation-induced expression of autophagy-related genes in Arabidopsis.
Biol Cell 98, 53-67 16354162.
[33] Scherz-Shouval, R., and Elazar, Z. (2011). Regulation of autophagy by ROS: physiology and pathology.
Trends Biochem Sci 36, 30-38 20728362.
[34] Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., and Elazar, Z. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4.
EMBO J 26, 1749-1760 17347651.
[35] Seay, M., Hayward, A.P., Tsao, J., and Dinesh-Kumar, S.P. (2009). Something Old, Something New: Plant Innate Immunity and Autophagy
. In: Autophagy in Infection and Immunity . Levine B, Yoshimori T, and Deretic V, eds.
Berlin Heidelberg:
Springer. 287-306 .
[36] Shin, J.H., Yoshimoto, K., Ohsumi, Y., Jeon, J.S., and An, G. (2009). OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice.
Mol Cells 27, 67-74 19214435.
[37] Slavikova, S., Ufaz, S., Avin-Wittenberg, T., Levanony, H., and Galili, G. (2008). An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses.
J Exp Bot 59, 4029-4043 18836138.
[38] Su, W., Ma, H., Liu, C., Wu, J., and Yang, J. (2006). Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4.
Mol Biol Rep 33, 273-278 17082902.
[39] Thompson, A.R., and Vierstra, R.D. (2005). Autophagic recycling: lessons from yeast help define the process in plants.
Curr Opin Plant Biol 8, 165-173 15752997.
[40] Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K., and Kobayashi, H. (1999). A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification.
Plant Cell 11, 1195-1206 10402422.
[41] Wang, Y., Nishimura, M.T., Zhao, T., and Tang, D. (2011a). ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis.
Plant J 10.1111/j.1365-1313X.2011.04669.x21645148.
[42] Wang, Y., Wu, Y., and Tang, D. (2011b). The autophagy gene, ATG18a, plays a negative role in powdery mildew resistance and mildew-induced cell death in Arabidopsis.
Plant Signal Behav 6, 1408-1410 21847024.
[43] Xia, K., Liu, T., Ouyang, J., Wang, R., Fan, T., and Zhang, M. (2011). Genome-Wide Identification, Classification, and Expression Analysis of Autophagy-Associated Gene Homologues in Rice (Oryza sativa L.).
DNA Res 10.1093/dnares/dsr102421795261.
[44] Xie, Z., and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations.
Nat Cell Biol 9, 1102-1109 17909521.
[45] Xiong, Y., Contento, A.L., and Bassham, D.C. (2007a). Disruption of autophagy results in constitutive oxidative stress in Arabidopsis.
Autophagy 3, 257-258 17312382.
[46] Xiong, Y., Contento, A.L., Nguyen, P.Q., and Bassham, D.C. (2007b). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis.
Plant Physiol 143, 291-299 17098847.
[47] Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., and Ohsumi, Y. (2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy.
Plant Cell 16, 2967-2983 15494556.
[48] Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., Ohsumi, Y., and Shirasu, K. (2009). Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis.
Plant Cell 21, 2914-2927 19773385.
[49] Zhu, J.K. (2001). Cell signaling under salt, water and cold stresses.
Curr Opin Plant Biol 4, 401-406 11597497.