Transcriptional activators and activation mechanisms

Jun Ma()

PDF(181 KB)
PDF(181 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (11) : 879-888. DOI: 10.1007/s13238-011-1101-7
REVIEW
REVIEW

Transcriptional activators and activation mechanisms

  • Jun Ma()
Author information +
History +

Abstract

Transcriptional activators are required to turn on the expression of genes in a eukaryotic cell. Activators bound to the enhancer can facilitate either the recruitment of RNA polymerase II to the promoter or its elongation. This article examines a few selected issues in understanding activator functions and activation mechanisms.

Keywords

activator / transcription / co-activator / enhancer / promoter / signal transduction / development

Cite this article

Download citation ▾
Jun Ma. Transcriptional activators and activation mechanisms. Prot Cell, 2011, 2(11): 879‒888 https://doi.org/10.1007/s13238-011-1101-7

References

[1] Adams, C.C., and Workman, J.L. (1995). Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol Cell Biol 15, 1405-1421 .
[2] Baird-Titus, J.M., Clark-Baldwin, K., Dave, V., Caperelli, C.A., Ma, J., and Rance, M. (2006). The solution structure of the native K50 Bicoid homeodomain bound to the consensus TAATCC DNA-binding site. J Mol Biol 356, 1137-1151 .
[3] Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res 21, 381-395 .
[4] Bauer, D.C., Buske, F.A., and Bailey, T.L. (2010). Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster. BMC Bioinformatics 11, 366.
[5] Bertolino, E., and Singh, H. (2002). POU/TBP cooperativity: a mechanism for enhancer action from a distance. Mol Cell 10, 397-407 .
[6] Blackwood, E.M., and Kadonaga, J.T. (1998). Going the distance: a current view of enhancer action. Science 281, 61-63 .
[7] Blau, J., Xiao, H., McCracken, S., O'Hare, P., Greenblatt, J., and Bentley, D. (1996). Three functional classes of transcriptional activation domains. Mol Cell Biol 16, 2044-2055 .
[8] Boettiger, A.N., and Levine, M. (2009). Synchronous and stochastic patterns of gene activation in the Drosophila embryo. Science 325, 471-473 .
[9] Brent, R. (2004). Building an artificial regulatory system to understand a natural one. Cell 116, S73-74, 71 p following S76.
[10] Brent, R., and Ptashne, M. (1985). A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43, 729-736 .
[11] Brivanlou, A.H., and Darnell, J.E. Jr. (2002). Signal transduction and the control of gene expression. Science 295, 813-818 .
[12] Bronstein, R., Levkovitz, L., Yosef, N., Yanku, M., Ruppin, E., Sharan, R., Westphal, H., Oliver, B., and Segal, D. (2010). Transcriptional regulation by CHIP/LDB complexes. PLoS Genet 6, e1001063.
[13] Brooks, C.L., and Gu, W. (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15, 164-171 .
[14] Brown, S.A., Imbalzano, A.N., and Kingston, R.E. (1996). Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev 10, 1479-1490 .
[15] Bulger, M., and Groudine, M. (1999). Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13, 2465-2477 .
[16] Burz, D.S., Pivera-Pomar, R., Jackle, H., and Hanes, S.D. (1998). Cooperative DNA-binding by Bicoid provides a mechanism for threshold-dependent gene activation in the Drosophila embryo. EMBO J 17, 5998-6009 .
[17] Calhoun, V.C., and Levine, M. (2003). Coordinate regulation of an extended chromosome domain. Cell 113, 278-280 .
[18] Calhoun, V.C., Stathopoulos, A., and Levine, M. (2002). Promoter-proximal tethering elements regulate enhancer-promoter specificity in the Drosophila Antennapedia complex. Proc Natl Acad Sci USA 99, 9243-9247 .
[19] Carey, M., and Smale, S.T. (2000). Transcriptional regulation in eukaryotes: Concepts, Strategies, and Techniques. Cold Spring Harbor , New York: Cold Spring Harbor Laboratory Press.
[20] Chatterjee, S., and Struhl, K. (1995). Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature 374, 820-822 .
[21] Cheung, D., Miles, C., Kreitman, M., and Ma, J. (2011). Scaling of the Bicoid morphogen gradient by a volume-dependent production rate. Development 138, 2741-2749 .
[22] Chi, T., and Carey, M. (1996). Assembly of the isomerized TFIIA-TFIID-TATA ternary complex is necessary and sufficient for gene activation. Gend Dev 10, 2540-2550 .
[23] Chopra, V.S., Hendrix, D.A., Core, L.J., Tsui, C., Lis, J.T., and Levine, M. (2011). The polycomb group mutant esc leads to augmented levels of paused Pol II in the Drosophila embryo. Mol Cell 42, 837-844 .
[24] Chubb, J.R., and Liverpool, T.B. (2010). Bursts and pulses: insights from single cell studies into transcriptional mechanisms. Curr Opin Genet Dev 20, 478-484 .
[25] Conaway, R.C., Brower, C.S., and Conaway, J.W. (2002). Emerging roles of ubiquitin in transcription regulation. Science 296, 1254-1258 .
[26] Core, L.J., Waterfall, J.J., and Lis, J.T. (2008). Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845-1848 .
[27] Darnell, J.E., Jr., Kerr, I.M., and Stark, G.R. (1994). Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421 .
[28] Deng, J., Wang, W., Lu, L.J., and Ma, J. (2010). A two-dimensional simulation model of the Bicoid gradient in Drosophila. PLoS ONE 5, e10275.
[29] Dorsett, D. (1999). Distant liaisons: long-range enhancer-promoter interactions in Drosophila. Curr Opin Genet Dev 9, 505-514 .
[30] Elowitz, M.B., Levine, A.J., Siggia, E.D., and Swain, P.S. (2002). Stochastic gene expression in a single cell. Science 297, 1183-1186 .
[31] Farrell, S., Simkovich, N., Wu, Y., Barberis, A., and Ptashne, M. (1996). Gene activation by recruitment of the RNA polymerase II holoenzyme. Gend Dev 10, 2359-2367 .
[32] Fields, S., and Song, O. (1989). A novel genetic system to detect protein-protein interactions. Nature 340, 245-246 .
[33] Foley, K.P., and Engel, J.D. (1992). Individual stage selector element mutations lead to reciprocal changes in beta- vs. epsilon-globin gene transcription: genetic confirmation of promoter competition during globin gene switching. Genes Dev 6, 730-744 .
[34] Frankel, N., Davis, G.K., Vargas, D., Wang, S., Payre, F., and Stern, D.L. (2010). Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature 466, 490-493 .
[35] Frappier, L., and Verrijzer, C.P. (2011). Gene expression control by protein deubiquitinases. Curr Opin Genet Dev 21, 207-213 .
[36] Garvie, C.W., and Wolberger, C. (2001). Recognition of specific DNA sequences. Mol Cell 8, 937-946 .
[37] Giardina, C., and Lis, J.T. (1993). DNA melting on yeast RNA polymerase II promoters. Science 261, 759-762 .
[38] Gill, G. (2005). Something about SUMO inhibits transcription. Curr Opin Genet Dev 15, 536-541 .
[39] Golding, I., and Cox, E.C. (2006). Eukaryotic transcription: what does it mean for a gene to be 'on'? Curr Biol 16, R371-R373 .
[40] Golding, I., Paulsson, J., Zawilski, S.M., and Cox, E.C. (2005). Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025-1036 .
[41] Gonzalez-Gouto, E., Klages, N., and Strubin, M. (1997). Synergistic and promoter-selective activation of transcription by recruitment of transcription factors TFIID and TFIIB. Proc Natl Acad Sci USA 94, 8036-8041 .
[42] Gregor, T., Tank, D.W., Wieschaus, E.F., and Bialek, W. (2007a). Probing the limits to positional information. Cell 130, 153-164 .
[43] Gregor, T., Wieschaus, E.F., McGregor, A.P., Bialek, W., and Tank, D.W. (2007b). Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130, 141-152 .
[44] Grimm, O., Coppey, M., and Wieschaus, E. (2010). Modelling the Bicoid gradient. Development 137, 2253-2264 .
[45] Gu, W., and Roeder, R.G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606 .
[46] Hahn, S. (2004). Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 11, 394-403 .
[47] Hampsey, M. (1998). Molecular Genetics of the RNA polymerase II general transcription machinery. Microbiol Mol Biol Rev 62, 465-503 .
[48] Han, M., and Grunstein, M. (1988). Nucleosome loss activates yeast downstream promoters in vivo. Cell 55, 1137-1145 .
[49] He, F., Ren, J., Wang, W., and Ma, J. (2011). A multiscale investigation of bicoid-dependent transcriptional events in Drosophila embryos. PLoS ONE 6, e19122.
[50] He, F., Saunders, T., Wen, Y., Cheung, D., Jiao, R., ten Wolde, P., Howard, M., and Ma, J. (2010a). Shaping a morphogen gradient for positional precision. Biophys J 99, 697-707 .
[51] He, F., Wen, Y., Cheung, D., Deng, J., Lu, L.J., Jiao, R., and Ma, J. (2010b). Distance measurements via the morphogen gradient of Bicoid in Drosophila embryos. BMC Dev Biol 10, 80.
[52] He, F., Wen, Y., Deng, J., Lin, X., Lu, J., Jiao, R., and Ma, J. (2008). Probing intrinsic properties of a robust morphogen gradient in Drosophila. Dev Cell 15, 558-567 .
[53] Herrera, F.J., and Triezenberg, S.J. (2004). Molecular biology: what ubiquitin can do for transcription. Curr Biol 14, R622-R624 .
[54] Hirose, Y., and Ohkuma, Y. (2007). Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression. J Biochem 141, 601-608 .
[55] Ho, L., and Crabtree, G.R. (2010). Chromatin remodelling during development. Nature 463, 474-484 .
[56] Hobert, O. (2010). Gene regulation: enhancers stepping out of the shadow. Curr Biol 20, R697-R699 .
[57] Hong, J.W., Hendrix, D.A., and Levine, M.S. (2008). Shadow enhancers as a source of evolutionary novelty. Science (New York, NY 321, 1314.
[58] Hope, I.A., and Struhl, K. (1986). Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46, 885-894 .
[59] Jackson, S.P., and Tjian, R. (1988). O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 55, 125-133 .
[60] Kadonaga, J.T. (2004). Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116, 247-257 .
[61] Kaern, M., Elston, T.C., Blake, W.J., and Collins, J.J. (2005). Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6, 451-464 .
[62] Kamemura, K., and Hart, G.W. (2003). Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription. Prog Nucleic Acid Res Mol Biol 73, 107-136 .
[63] Keegan, L., Gill, G., and Ptashne, M. (1986). Separation of DNA binding from the transcriptional-activating function of a eukaryotic regulatory protein. Science 231, 699-704 .
[64] Kim, Y., Geiger, J.H., Hahn, S., and Sigler, P.B. (1993). Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512-520 .
[65] Klein, C., and Struhl, K. (1994). Increased recruitment of TATA-binding protein to the promoter by transcriptional activation domains in vivo. Science 266, 280-282 .
[66] Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705 .
[67] Krumm, A., Meulia, T., Brunvand, M., and Groudine, M. (1992). The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Gend Dev 6, 2201-2213 .
[68] Kuhn, E.J., and Geyer, P.K. (2003). Genomic insulators: connecting properties to mechanism. Curr Opin Cell Biol 15, 259-265 .
[69] Levine, M. (2011). Paused RNA polymerase II as a developmental checkpoint. Cell 145, 502-511 .
[70] Levine, M., and Tjian, R. (2003). Transcription regulation and animal diversity. Nature 424, 147-151 .
[71] Li, B., Carey, M., and Workman, J.L. (2007). The role of chromatin during transcription. Cell 128, 707-719 .
[72] Li, J., and Gilmour, D.S. (2011). Promoter proximal pausing and the control of gene expression. Curr Opin Genet Dev 21, 231-235 .
[73] Li, X.Y., Virbasius, A., Zhu, X., and Green, M.R. (1999). Enhancement of TBP binding by activators and general transcription factors. Nature 399, 605-609 .
[74] Lipford, J.R., Smith, G.T., Chi, Y., and Deshaies, R.J. (2005). A putative stimulatory role for activator turnover in gene expression. Nature 438, 113-116 .
[75] Lis, J.T., Mason, P., Peng, J., Price, D.H., and Werner, J. (2000). P-TEFb kinase recruitment and function at heat shock loci. Genes Dev 14, 792-803 .
[76] Liu, J., He, F., and Ma, J. (2011). Morphogen gradient formation and action: insights from studying Bicoid protein degradation. Fly (Austin) 5, 424-426
[77] Liu, J., and Ma, J. (2011). Fates-shifted is an F-box protein that targets Bicoid for degradation and regulates developmental fate determination in Drosophila embryos. Nat Cell Biol 13, 22-29 .
[78] Lohr, U., Chung, H.R., Beller, M., and Jackle, H. (2010). Bicoid: Morphogen function revisited. Fly (Austin) 4, 236-240 .
[79] Ma, J. (2004). Actively seeking activating sequences. Cell S116, S75-S76 .
[80] Ma, J. (2005). Crossing the line between activation and repression. Trends Genet 21, 54-59 .
[81] Ma, J., and Ptashne, M. (1987a). A new class of yeast transcriptional activators. Cell 51, 113-119 . Re-printed in part: Cell, S116 (2004).
[82] Ma, J., and Ptashne, M. (1987b). Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48, 847-853 .
[83] Ma, J., and Ptashne, M. (1988). Converting a eukaryotic transcriptional inhibitor into an activator. Cell 55, 443-446 .
[84] Ma, X., Yuan, D., Diepold, K., Scarborough, T., and Ma, J. (1996). The Drosophila morphogenetic protein Bicoid binds DNA cooperatively. Development 122, 1195-1206.
[85] Malik, S., and Roeder, R.G. (2000). Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem Sci 25, 277-283 .
[86] Malik, S., and Roeder, R.G. (2010). The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11, 761-772 .
[87] Mancebo, H.S., Lee, G., Flygare, J., Tomassini, J., Luu, P., Zhu, Y., Peng, J., Blau, C., Hazuda, D., Price, D., (1997). P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 11, 2633-2644 .
[88] Matthews, J.M., and Visvader, J.E. (2003). LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins. EMBO Rep 4, 1132-1137 .
[89] Meinhart, A., Kamenski, T., Hoeppner, S., Baumli, S., and Cramer, P. (2005). A structural perspective of CTD function. Genes Dev 19, 1401-1415 .
[90] Merika, M., and Thanos, D. (2001). Enhanceosomes. Curr Opin Genet Dev 11, 205-208 .
[91] Morcillo, P., Rosen, C., Baylies, M.K., and Dorsett, D. (1997). Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila. Genes Dev 11, 2729-2740 .
[92] Muratani, M., Kung, C., Shokat, K.M., and Tansey, W.P. (2005). The F box protein Dsg1/Mdm30 is a transcriptional coactivator that stimulates Gal4 turnover and cotranscriptional mRNA processing. Cell 120, 887-899 .
[93] Myers, L.C., and Kornberg, R.D. (2000). Mediator of transcriptional regulation. Annu Rev Biochem 69, 729-749 .
[94] Naar, A.M., Lemon, B.D., and Tjian, R. (2001). Transcriptional coactivator complexes. Annu Rev Biochem 70, 475-501 .
[95] Narlikar, G.J., Fan, H.Y., and Kingston, R.E. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475-487 .
[96] Nechaev, S., and Adelman, K. (2011). Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation. Biochim Biophys Acta 1809, 34-45 .
[97] Nechaev, S., Fargo, D.C., dos Santos, G., Liu, L., Gao, Y., and Adelman, K. (2010). Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335-338 .
[98] Nevado, J., Gaudreau, L., Adam, M., and Ptashne, M. (1999). Transcriptional activation by artificial recruitment in mammalian cells. Proc Natl Acad Sci USA 96, 2674-2677 .
[99] Nikolov, D.B., Hu, S.-H., Lin, J., Gasch, A., Hoffmann, A., Horikoshi, M., Chua, N.-H., Roeder, R.G., and Burley, S.K. (1992). Crystal structure of TFIID TATA-box binding protein. Nature 360, 40-46 .
[100] Nonet, M., Sweetser, D., and Young, R.A. (1987). Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell 50, 909-915 .
[101] Ong, C.T., and Corces, V.G. (2011). Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 12, 283-293 .
[102] Orphanides, G., Lagrange, T., and Reinberg, D. (1996). The general transcription factors of RNA polymerase II. Genes Dev 10, 2657-2683 .
[103] Ouyang, J., and Gill, G. (2009). SUMO engages multiple corepressors to regulate chromatin structure and transcription. Epigenetics 4, 440-444 .
[104] Pare, A., Lemons, D., Kosman, D., Beaver, W., Freund, Y., and McGinnis, W. (2009). Visualization of individual Scr mRNAs during Drosophila embryogenesis yields evidence for transcriptional bursting. Curr Biol 19, 2037-2042 .
[105] Patikoglou, G., and Burley, S.K. (1997). Eukaryotic transcription factor-DNA complexes. Annu Rev Biophys Biomol Struct 26, 289-325 .
[106] Perry, M.W., Boettiger, A.N., Bothma, J.P., and Levine, M. (2010). Shadow enhancers foster robustness of Drosophila gastrulation. Curr Biol 20, 1562-1567 .
[107] Peterlin, B.M., and Price, D.H. (2006). Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23, 297-305 .
[108] Peterson, C.L., and Workman, J.L. (2000). Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 10, 187-192 .
[109] Porcher, A., Abu-Arish, A., Huart, S., Roelens, B., Fradin, C., and Dostatni, N. (2010). The time to measure positional information: maternal hunchback is required for the synchrony of the Bicoid transcriptional response at the onset of zygotic transcription. Development 137, 2795-2804 .
[110] Porcher, A., and Dostatni, N. (2010). The bicoid morphogen system. Curr Biol 20, R249-R254 .
[111] Prives, C., and Manley, J.L. (2001). Why is p53 acetylated? Cell 107, 815-818 .
[112] Ptashne, M. (1988). How eukaryotic transcriptional activators work. Nature 335, 683-689 .
[113] Ptashne, M. (2004). Two "what if" experiments. Cell S116, S71-S72 .
[114] Ptashne, M., and Gann, A. (1997). Transcriptional activation by recruitment. Nature 386, 569-577 .
[115] Ptashne, M., and Gann, A. (1998). Imposing specificity by localization: mechanism and evolution. Curr Biol 8, R812-R822 .
[116] Ptashne, M., and Gann, A.A.F. (1990). Activators and targets. Nature 346, 329-331 .
[117] Ranish, J.A., and Hahn, S. (1996). Transcription: basal factors and activation. Curr Opin Genet Dev 6, 151-158 .
[118] Raser, J.M., and O'Shea, E.K. (2005). Noise in gene expression: origins, consequences, and control. Science (New York, NY 309, 2010-2013 .
[119] Rasmussen, E.B., and Lis, J.T. (1993). In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc Natl Acad Sci USA 90, 7923-7927 .
[120] Rasmussen, E.B., and Lis, J.T. (1995). Short transcripts of the ternary complex provide insight into RNA polymerase II elongational pausing. J Mol Biol 252, 522-535 .
[121] Rougvie, A.E., and Lis, J.T. (1988). The RNA polymerase II molecule at the 5'-end of the uninduced hsp70 genes of D. melanogaster is transcriptionally engaged. Cell 54, 795-804 .
[122] Ruthenburg, A.J., Li, H., Patel, D.J., and Allis, C.D. (2007). Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8, 983-994 .
[123] Sadowski, I., Ma, J., Triezenberg, S., and Ptashne, M. (1988). GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563-564 .
[124] Sharpe, J., Nonchev, S., Gould, A., Whiting, J., and Krumlauf, R. (1998). Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. EMBO J 17, 1788-1798 .
[125] Sims, R.J. 3rd, Belotserkovskaya, R., and Reinberg, D. (2004a). Elongation by RNA polymerase II: the short and long of it. Genes Dev 18, 2437-2468 .
[126] Sims, R.J. 3rd, Mandal, S.S., and Reinberg, D. (2004b). Recent highlights of RNA-polymerase-II-mediated transcription. Curr Opin Cell Biol 16, 263-271 .
[127] Spellman, P.T., and Rubin, G.M. (2002). Evidence for large domains of similarly expressed genes in the Drosophila genome. J Biol 1, 5.
[128] Spitz, F., Gonzalez, F., and Duboule, D. (2003). A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113, 405-417 .
[129] Stargell, L.A., and Struhl, K. (1996). Mechanisms of transcriptional activation in vivo: two steps forward. Trends Genet 12, 311-315 .
[130] Thanos, D., and Maniatis, T. (1995). Virus induction of human INFβ gene expression requires the assembly of an enhanceosome. Cell 83, 1091-1100 .
[131] To, T.L., and Maheshri, N. (2010). Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science 327, 1142-1145 .
[132] Torigoi, E., Bennani-Baiti, I.M., Rosen, C., Gonzalez, K., Morcillo, P., Ptashne, M., and Dorsett, D. (2000). Chip interacts with diverse homeodomain proteins and potentiates bicoid activity in vivo. Proc Natl Acad Sci USA 97, 2686-2691 .
[133] Travers, A. (2000). Recognition of distorted DNA structures by HMG domains. Curr Opin Struct Biol 10, 102-109 .
[134] Triezenberg, S.J., Kingsbury, R.C., and McKnight, S.L. (1988). Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev 2, 718-729 .
[135] von der Lehr, N., Johansson, S., Wu, S., Bahram, F., Castell, A., Cetinkaya, C., Hydbring, P., Weidung, I., Nakayama, K., Nakayama, K.I., (2003). The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 11, 1189-1200 .
[136] Wallace, J.A., and Felsenfeld, G. (2007). We gather together: insulators and genome organization. Curr Opin Genet Dev 17, 400-407 .
[137] Wang, W., Carey, M., and Gralla, J.D. (1992). Polymerase II promoter activation: Closed complex formation and ATP-driven start-site opening. Science 255, 450-453 .
[138] Wang, X., Muratani, M., Tansey, W.P., and Ptashne, M. (2010). Proteolytic instability and the action of nonclassical transcriptional activators. Curr Biol 20, 868-871 .
[139] Weake, V.M., and Workman, J.L. (2010). Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet 11, 426-437 .
[140] West, A.G., Gaszner, M., and Felsenfeld, G. (2002). Insulators: many functions, many mechanisms. Genes Dev 16, 271-288 .
[141] Wu, C. (1997). Chromatin remodeling and the control of gene expression. J Biol Chem 272, 28171-28174 .
[142] Wu, J., and Grunstein, M. (2000). 25 years after the nucleosome model: chromatin modifications. Trends Biochem Sci 25, 619-623 .
[143] Wu, R.C., Feng, Q., Lonard, D.M., and O'Malley, B.W. (2007). SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129, 1125-1140 .
[144] Wyrick, J.J., Holstege, F.C., Jennings, E.G., Causton, H.C., Shore, D., Grunstein, M., Lander, E.S., and Young, R.A. (1999). Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402, 418-421 .
[145] Xiao, H., Friesen, J.D., and Lis, J.T. (1995). Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol Cell Biol 15, 5757-5761 .
[146] Zeitlinger, J., Stark, A., Kellis, M., Hong, J.W., Nechaev, S., Adelman, K., Levine, M., and Young, R.A. (2007). RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39, 1512-1516 .
[147] Zhou, Q., Chen, D., Pierstorff, E., and Luo, K. (1998). Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages. EMBO J 17, 3681-3691 .
[148] Zhu, Y., Pe'ery, T., Peng, J., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M.B., and Price, D.H. (1997). Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 11, 2622-2632 .
[149] Zuniga, A., Michos, O., Spitz, F., Haramis, A.P., Panman, L., Galli, A., Vintersten, K., Klasen, C., Mansfield, W., Kuc, S., (2004). Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes Dev 18, 1553-1564 .
AI Summary AI Mindmap
PDF(181 KB)

Accesses

Citations

Detail

Sections
Recommended

/