Parkinson disease drug screening based on the interaction between D2 dopamine receptor and beta-arrestin 2 detected by capillary zone electrophoresis
Parkinson’s disease is the second most common neurodegenerative disease in the world. Beta-arrestin-2 has been reported to be an important protein involved in D2 dopamine receptor desensitization, which is essential to Parkinson’s disease. Moreover, the potential value of pharmacological inactivation of G protein-coupled receptor kinase or arrestin in the treatment of patients with Parkinson’s disease has recently been shown. We studied the interaction between D2 dopamine receptor and beta-arrestin-2 and the pharmacological regulation of chemical compounds on such interaction using capillary zone electrophoresis. The results from screening more than 40 compounds revealed three compounds that remarkably inhibit the beta-arrestin-2/D2 dopamine receptor interaction among them. These compounds are promising therapies for Parkinson’s disease, and the method used in this study has great potential for application in large-scale drug screening and evaluation.
drug screening / D2 dopamine receptor / beta-arrestin-2 / capillary zone electrophoresis / protein-protein interaction / Parkinson’s disease
/
〈 | 〉 |