Structural view of the regulatory subunit of aspartate kinase from Mycobacterium tuberculosis

Qingzhu Yang1, Kun Yu2, Liming Yan2, Yuanyuan Li1, Cheng Chen2, Xuemei Li1()

PDF(681 KB)
PDF(681 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (9) : 745-754. DOI: 10.1007/s13238-011-1094-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Structural view of the regulatory subunit of aspartate kinase from Mycobacterium tuberculosis

  • Qingzhu Yang1, Kun Yu2, Liming Yan2, Yuanyuan Li1, Cheng Chen2, Xuemei Li1()
Author information +
History +

Abstract

The aspartate kinase (AK) from Mycobacterium tuberculosis (Mtb) catalyzes the biosynthesis of aspartate family amino acids, including lysine, threonine, isoleucine and methionine. We determined the crystal structures of the regulatory subunit of aspartate kinase from Mtb alone (referred to as MtbAKβ) and in complex with threonine (referred to as MtbAKβ-Thr) at resolutions of 2.6 ? and 2.0 ?, respectively. MtbAKβ is composed of two perpendicular non-equivalent ACT domains [aspartate kinase, chorismate mutase, and TyrA (prephenate dehydrogenase)] per monomer. Each ACT domain contains two α helices and four antiparallel β strands. The structure of MtbAKβ shares high similarity with the regulatory subunit of the aspartate kinase from Corynebacterium glutamicum (referred to as CgAKβ), suggesting similar regulatory mechanisms. Biochemical assays in our study showed that MtbAK is inhibited by threonine. Based on crystal structure analysis, we discuss the regulatory mechanism of MtbAK.

Keywords

Mycobacterium tuberculosis / aspartate kinase / crystal structure / β subunit

Cite this article

Download citation ▾
Qingzhu Yang, Kun Yu, Liming Yan, Yuanyuan Li, Cheng Chen, Xuemei Li. Structural view of the regulatory subunit of aspartate kinase from Mycobacterium tuberculosis. Prot Cell, 2011, 2(9): 745‒754 https://doi.org/10.1007/s13238-011-1094-2

References

[1] Adams , P.D., Grosse-Kunstleve , R.W., Hung , L.W., Ioerger , T.R., McCoy , A.J., Moriarty , N.W., Read , R.J., Sacchettini , J.C., Sauter , N.K., and Terwilliger , T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 1948-1954 12393927.
[2] Aravind , L., and Koonin , E.V. (1999). Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J Mol Biol 287, 1023-1040 10222208.
[3] Bailey , S., and the Collaborative Computational Project, Number 4. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50, 760-763 15299374.
[4] Black , S., and Wright , N.G. (1955). beta-Aspartokinase and beta-aspartyl phosphate. J Biol Chem 213, 27-38 14353903.
[5] Chaitanya , M., Babajan , B., Anuradha , C.M., Naveen , M., Rajasekhar , C., Madhusudana , P., and Kumar , C.S. (2010). Exploring the molecular basis for selective binding of Mycobacterium tuberculosis Asp kinase toward its natural substrates and feedback inhibitors: a docking and molecular dynamics study. J Mol Model 16, 1357-1367 20140471.
[6] Chan , E.D., and Iseman , M.D. (2008). Multidrug-resistant and extensively drug-resistant tuberculosis: a review. Curr Opin Infect Dis 21, 587-595 18978526.
[7] Chipman , D.M., and Shaanan , B. (2001). The ACT domain family. Curr Opin Struct Biol 11, 694-700 11751050.
[8] Cirillo , J.D., Weisbrod , T.R., Pascopella , L., Bloom , B.R., and Jacobs , W.R. Jr. (1994). Isolation and characterization of the aspartokinase and aspartate semialdehyde dehydrogenase operon from mycobacteria. Mol Microbiol 11, 629-639 7910936.
[9] Cole , S.T., Brosch , R., Parkhill , J., Garnier , T., Churcher , C., Harris , D., Gordon , S.V., Eiglmeier , K., Gas , S., Barry , C.E., (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-544. Nature 396, 190-198 (Erratum).
[10] Corbett , E.L., Watt , C.J., Walker , N., Maher , D., Williams , B.G., Raviglione , M.C., and Dye , C. (2003). The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163, 1009-1021 12742798.
[11] DeLano , W.L., and Lam , J.W. (2005). PyMOL: A communications tool for computational models. Abstracts of Papers of the American Chemical Society 230, U1371-U1372 .
[12] Emsley , P., and Cowtan , K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 15572765.
[13] Faehnle , C.R., Liu , X., Pavlovsky , A., and Viola , R.E. (2006). The initial step in the archaeal aspartate biosynthetic pathway catalyzed by a monofunctional aspartokinase. Acta Crystallogr Sect F Struct Biol Cryst Commun 62, 962-966 17012784.
[14] Fleischmann , R.D., Alland , D., Eisen , J.A., Carpenter , L., White , O., Peterson , J., DeBoy , R., Dodson , R., Gwinn , M., Haft , D., (2002). Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184, 5479-5490 12218036.
[15] Gilker J.M., and Jucker M.T. (1997). Mycobacterium tuberculosis ask-alpha, ask-beta and asd genes . Submitted (FEB-1997) to the EMBL/GenBank/DDBJ databases .
[16] Grant , G.A. (2006). The ACT domain: a small molecule binding domain and its role as a common regulatory element. J Biol Chem 281, 33825-33829 16987805.
[17] Hayward , S., and Lee , R.A. (2002). Improvements in the analysis of domain motions in proteins from conformational change: DynDom version 1.50. J Mol Graph Model 21, 181-183 12463636.
[18] Kotaka , M., Ren , J., Lockyer , M., Hawkins , A.R., and Stammers , D.K. (2006). Structures of R- and T-state Escherichia coli aspartokinase III. Mechanisms of the allosteric transition and inhibition by lysine. J Biol Chem 281, 31544-31552 16905770.
[19] Mas-Droux , C., Curien , G., Robert-Genthon , M., Laurencin , M., Ferrer , J.L., and Dumas , R. (2006). A novel organization of ACT domains in allosteric enzymes revealed by the crystal structure of Arabidopsis aspartate kinase. Plant Cell 18, 1681-1692 16731588.
[20] Matthews , B.W. (1968). Solvent content of protein crystals. J Mol Biol 33, 491-497 5700707.
[21] McCoy , A.J., Grosse-Kunstleve , R.W., Adams , P.D., Winn , M.D., Storoni , L.C., and Read , R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674 19461840.
[22] Nishiyama , M., Kukimoto , M., Beppu , T., and Horinouchi , S. (1995). An operon encoding aspartokinase and purine phosphoribosyltransferase in Thermus flavus. Microbiology 141, 1211-1219 7773416.
[23] Otwinowski , Z., and Minor , W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography . Pt A 276, 307-326 .
[24] Rapaport , E., Levina , A., Metelev , V., and Zamecnik , P.C. (1996). Antimycobacterial activities of antisense oligodeoxynucleotide phosphorothioates in drug-resistant strains. Proc Natl Acad Sci U S A 93, 709-713 8570621.
[25] Robin , A.Y., Cobessi , D., Curien , G., Robert-Genthon , M., Ferrer , J.L., and Dumas , R. (2010). A new mode of dimerization of allosteric enzymes with ACT domains revealed by the crystal structure of the aspartate kinase from Cyanobacteria. J Mol Biol 399, 283-293 20398676.
[26] Rognes , S.E., Lea , P.J., and Miflin , B.J. (1980). S-adenosylmethionine—a novel regulator of aspartate kinase. Nature 287, 357-359 6252474.
[27] Schuldt , L., Suchowersky , R., Veith , K., Mueller-Dieckmann , J., and Weiss , M.S. (2011). Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the regulatory domain of aspartokinase (Rv3709c) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 67, 380-385 21393848.
[28] Tomioka , H., and Namba , K. (2006). [Development of antituberculous drugs: current status and future prospects] . Kekkaku 81, 753-774 17240921.
[29] Yoshida , A., Tomita , T., Kono , H., Fushinobu , S., Kuzuyama , T., and Nishiyama , M. (2009). Crystal structures of the regulatory subunit of Thr-sensitive aspartate kinase from Thermus thermophilus. FEBS J 276, 3124-3136 19490113.
[30] Yoshida , A., Tomita , T., Kurihara , T., Fushinobu , S., Kuzuyama , T., and Nishiyama , M. (2007a). Structural Insight into concerted inhibition of alpha 2 beta 2-type aspartate kinase from Corynebacterium glutamicum. J Mol Biol 368, 521-536 17350037.
[31] Yoshida , A., Tomita , T., Kuzuyama , T., and Nishiyama , M. (2007b). Purification, crystallization and preliminary X-ray analysis of the regulatory subunit of aspartate kinase from Thermus thermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 63, 96-98 17277448.
[32] Yoshida , A., Tomita , T., Kuzuyama , T., and Nishiyama , M. (2010). Mechanism of concerted inhibition of alpha2beta2-type hetero-oligomeric aspartate kinase from Corynebacterium glutamicum. J Biol Chem 285, 27477-27486 20573952
AI Summary AI Mindmap
PDF(681 KB)

Accesses

Citations

Detail

Sections
Recommended

/