Quantitative proteomics analysis of parthenogenetically induced pluripotent stem cells

Zhe Hu1, Lei Wang1, Zhensheng Xie2, Xinlei Zhang3, Du Feng1, Fang Wang1, Bingfeng Zuo1, Lingling Wang1, Zhong Liu1, Zhisheng Chen1, Fuquan Yang2(), Lin Liu1()

PDF(598 KB)
PDF(598 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (8) : 631-646. DOI: 10.1007/s13238-011-1081-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantitative proteomics analysis of parthenogenetically induced pluripotent stem cells

  • Zhe Hu1, Lei Wang1, Zhensheng Xie2, Xinlei Zhang3, Du Feng1, Fang Wang1, Bingfeng Zuo1, Lingling Wang1, Zhong Liu1, Zhisheng Chen1, Fuquan Yang2(), Lin Liu1()
Author information +
History +

Abstract

Parthenogenetic embryonic stem (pES) cells isolated from parthenogenetic activation of oocytes and embryos, also called parthenogenetically induced pluripotent stem cells, exhibit pluripotency evidenced by both in vitro and in vivo differentiation potential. Differential proteomic analysis was performed using differential in-gel electrophoresis and isotope-coded affinity tag-based quantitative proteomics to investigate the molecular mechanisms underlying the developmental pluripotency of pES cells and to compare the protein expression of pES cells generated from either the in vivo-matured ovulated (IVO) oocytes or from the in vitro-matured (IVM) oocytes with that of fertilized embryonic stem (fES) cells derived from fertilized embryos. A total of 76 proteins were upregulated and 16 proteins were downregulated in the IVM pES cells, whereas 91 proteins were upregulated and 9 were downregulated in the IVO pES cells based on a minimal 1.5-fold change as the cutoff value. No distinct pathways were found in the differentially expressed proteins except for those involved in metabolism and physiological processes. Notably, no differences were found in the protein expression of imprinted genes between the pES and fES cells, suggesting that genomic imprinting can be corrected in the pES cells at least at the early passages. The germline competent IVM pES cells may be applicable for germ cell renewal in aging ovaries if oocytes are retrieved at a younger age.

Keywords

parthenogenetic embryonic stem cell / proteome / fluorescent two-dimensional difference in-gel electrophoresis / isotope-coded affinity tag

Cite this article

Download citation ▾
Zhe Hu, Lei Wang, Zhensheng Xie, Xinlei Zhang, Du Feng, Fang Wang, Bingfeng Zuo, Lingling Wang, Zhong Liu, Zhisheng Chen, Fuquan Yang, Lin Liu. Quantitative proteomics analysis of parthenogenetically induced pluripotent stem cells. Prot Cell, 2011, 2(8): 631‒646 https://doi.org/10.1007/s13238-011-1081-7

References

[1] Aebersold, R., Rist, B., and Gygi, S.P. (2000). Quantitative proteome analysis: methods and applications. Ann N Y Acad Sci 919, 33-47 .11083095
[2] Bartolomei, M.S. (2003). Epigenetics: role of germ cell imprinting. Adv Exp Med Biol 518, 239-245 .12817692
[3] Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254 .942051
[4] Brevini, T.A., and Gandolfi, F. (2008). Parthenotes as a source of embryonic stem cells. Cell Prolif 41, 20-30 .18181942
[5] Chen, Z., Liu, Z., Huang, J., Amano, T., Li, C., Cao, S., Wu, C., Liu, B., Zhou, L., Carter, M.G., (2009). Birth of parthenote mice directly from parthenogenetic embryonic stem cells. Stem Cells 27, 2136-2145 .19544532
[6] Choi, J., Koh, E., Suzuki, H., Maeda, Y., Yoshida, A., and Namiki, M. (2007). Alu sequence variants of the BPY2 gene in proven fertile and infertile men with Sertoli cell-only phenotype. Int J Urol 14, 431-435 .17511727
[7] Cibelli, J.B., Grant, K.A., Chapman, K.B., Cunniff, K., Worst, T., Green, H.L., Walker, S.J., Gutin, P.H., Vilner, L., Tabar, V., (2002). Parthenogenetic stem cells in nonhuman primates. Science 295, 819.11823632
[8] Cui, X.S., Shen X.H., Lee, C.K., Kang, Y.K., Wakayama, T., and Kim N.H. (2011). Analysis of proteomic profiling of mouse embryonic stem cells derived from fertilized, parthenogenetic and androgenetic blastocysts. Stem Cell Discovery 1, 1-15 .
[9] De Sousa, P. A., and Wilmut, I. (2007). Human parthenogenetic embryo stem cells: appreciating what you have when you have it. Cell Stem Cell 1, 243-244 .
[10] Dighe, V., Clepper, L., Pedersen, D., Byrne, J., Ferguson, B., Gokhale, S., Penedo, M.C., Wolf, D., and Mitalipov, S. (2008). Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes. Stem Cells 26, 756-766 .18192229
[11] Donnay, I., and Knoops, B. (2007). Peroxiredoxins in gametogenesis and embryo development. Subcell Biochem 44, 345-355 .18084902
[12] Fang, Z.F., Gai, H., Huang, Y.Z., Li, S.G., Chen, X.J., Shi, J.J., Wu, L., Liu, A., Xu, P., and Sheng, H.Z. (2006). Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos. Exp Cell Res 312, 3669-3682 .16996056
[13] Fortschegger, K., Wagner, B., Voglauer, R., Katinger, H., Sibilia, M., and Grillari, J. (2007). Early embryonic lethality of mice lacking the essential protein SNEV. Mol Cell Biol 27, 3123-3130 .17283042
[14] Graumann, J., Hubner, N.C., Kim, J.B., Ko, K., Moser, M., Kumar, C., Cox, J., Sch?ler, H., and Mann, M. (2008). Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5,111 proteins. Mol Cell Proteomics 7, 672-683 .18045802
[15] Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994-999 .10504701
[16] Harris, L.J., Abdollahi, H., Zhang, P., McIlhenny, S., Tulenko, T.N., and DiMuzio, P.J. (2011). Differentiation of adult stem cells into smooth muscle for vascular tissue engineering. J Surg Res 168, 306-314 .19959190
[17] Haynes, P.A., and Yates, J.R. 3rd. (2000). Proteome profiling-pitfalls and progress. Yeast 17, 81-87 .10900454
[18] He, L., Liu, J., Collins, I., Sanford, S., O’Connell, B., Benham, C.J., and Levens, D. (2000). Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. EMBO J 19, 1034-1044 .10698944
[19] Horii, T., Kimura, M., Morita, S., Nagao, Y., and Hatada, I. (2008). Loss of genomic imprinting in mouse parthenogenetic embryonic stem cells. Stem Cells 26, 79-88 .17962706
[20] Huber, P.A. (1998). Caldesmon. Int J Biochem Cell Biol 29, 1047-1051 .
[21] Jiang, H., Sun, B., Wang, W., Zhang, Z., Gao, F., Shi, G., Cui, B., Kong, X., He, Z., Ding, X., (2007). Activation of paternally expressed imprinted genes in newly derived germline-competent mouse parthenogenetic embryonic stem cell lines. Cell Res 17, 792-803 .17768400
[22] Kim, K., Lerou, P., Yabuuchi, A., Lengerke, C., Ng, K., West, J., Kirby, A., Daly, M.J., and Daley, G.Q. (2007). Histocompatible embryonic stem cells by parthenogenesis. Science 315, 482-486 .17170255
[23] Levchenko, A. (2005). Proteomics takes stem cell analyses to another level. Nat Biotechnol 23, 828-830 .16003369
[24] Li, C., Chen, Z., Liu, Z., Huang, J., Zhang, W., Zhou, L., Keefe, D.L., and Liu, L. (2009). Correlation of expression and methylation of imprinted genes with pluripotency of parthenogenetic embryonic stem cells. Hum Mol Genet 18, 2177-2187 .19324901
[25] Liu, Z., Hu, Z., Pan, X., Li, M., Togun, T.A., Tuck, D., Pelizzola, M., Huang, J., Ye, X., Yin, Y., (2011). Germline competency of parthenogenetic embryonic stem cells from immature oocytes of adult mouse ovary. Hum Mol Genet 20, 1339-1352 .21239471
[26] Lyakhovich, A., Canals, F., Nosov, M., and Surralles, J. (2007). A DIGE-based approach to study interacting proteins. J Biochem Biophys Methods 70, 693-695 .17433449
[27] Mai, Q., Yu, Y., Li, T., Wang, L., Chen, M.J., Huang, S.Z., Zhou, C., and Zhou, Q. (2007). Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17, 1008-1019 .18071366
[28] Mann, J.R., Gadi, I., Harbison, M.L., Abbondanzo, S.J., and Stewart, C.L. (1990). Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting. Cell 62, 251-260 .2372828
[29] Marouga, R., David, S., and Hawkins, E. (2005). The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382, 669-678 .15900442
[30] Monk, M. (1988). Genomic imprinting. Genes Dev 2, 921-925 .3049238
[31] Moseley, M.A. (2001). Current trends in differential expression proteomics: isotopically coded tags. Trends Biotechnol 19, S10-S16 .11780964
[32] Nagano, K., Taoka, M., Yamauchi, Y., Itagaki, C., Shinkawa, T., Nunomura, K., Okamura, N., Takahashi, N., Izumi, T., and Isobe, T. (2005). Large-scale identification of proteins expressed in mouse embryonic stem cells. Proteomics 5, 1346-1361 .15742316
[33] Rabilloud, T. (2002). Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2, 3-10 .11788986
[34] Sapienza, C. (2002). Imprinted gene expression, transplantation medicine, and the “other” human embryonic stem cell. Proc Natl Acad Sci U S A 99, 10243-10245 .12149520
[35] Shao, H., Wei, Z., Wang, L., Wen, L., Duan, B., Mang, L., and Bou, S. (2007). Generation and characterization of mouse parthenogenetic embryonic stem cells containing genomes from non-growing and fully grown oocytes. Cell Biol Int 31, 1336-1344 .17601752
[36] Skaletsky, H., Kuroda-Kawaguchi, T., Minx, P.J., Cordum, H.S., Hillier, L., Brown, L.G., Repping, S., Pyntikova, T., Ali, J., Bieri, T., (2003). The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825-837 .12815422
[37] Sritanaudomchai, H., Ma, H., Clepper, L., Gokhale, S., Bogan, R., Hennebold, J., Wolf, D., and Mitalipov, S. (2010). Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Hum Reprod 25, 1927-1941 .20522441
[38] Surani, M.A. (1998). Imprinting and the initiation of gene silencing in the germ line. Cell 93, 309-312 .9590162
[39] Vigé, A., Gallou-Kabani, C., Gross, M.S., Fabre, A., Junien, C., and Jais, J.P. (2006). An oligonucleotide microarray for mouse imprinted genes profiling. Cytogenet Genome Res 113, 253-261 .16575188
[40] Wang, D., and Gao, L. (2005). Proteomic analysis of neural differentiation of mouse embryonic stem cells. Proteomics 5, 4414-4426 .16222718
[41] Wang, S., Tang, X., Niu, Y., Chen, H., Li, B., Li, T., Zhang, X., Hu, Z., Zhou, Q., and Ji, W. (2007). Generation and characterization of rabbit embryonic stem cells. Stem Cells 25, 481-489 .17038672
[42] Wong, E.Y., Tse, J.Y., Yao, K.M., Tam, P.C., and Yeung, W.S. (2002). VCY2 protein interacts with the HECT domain of ubiquitin-protein ligase E3A. Biochem Biophys Res Commun 296, 1104-1111 .12207887
[43] Wu, W.W., Wang, G., Baek, S.J., and Shen, R.F. (2006). Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5, 651-658 .16512681
[44] Zhang, R., Sioma, C.S., Wang, S., and Regnier, F.E. (2001). Fractionation of isotopically labeled peptides in quantitative proteomics. Anal Chem 73, 5142-5149 .11721911
[45] Zimmerman, L., Parr, B., Lendahl, U., Cunningham, M., McKay, R., Gavin, B., Mann, J., Vassileva, G., and McMahon, A. (1994). Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12, 11-24 .8292356
AI Summary AI Mindmap
PDF(598 KB)

Accesses

Citations

Detail

Sections
Recommended

/