Interactomic study on interaction between lipid droplets and mitochondria

Jing Pu1,2, Cheol Woong Ha3, Shuyan Zhang1, Jong Pil Jung3, Won-Ki Huh3(), Pingsheng Liu1()

PDF(336 KB)
PDF(336 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (6) : 487-496. DOI: 10.1007/s13238-011-1061-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Interactomic study on interaction between lipid droplets and mitochondria

  • Jing Pu1,2, Cheol Woong Ha3, Shuyan Zhang1, Jong Pil Jung3, Won-Ki Huh3(), Pingsheng Liu1()
Author information +
History +

Abstract

An increasing body of evidence shows that the lipid droplet, a neutral lipid storage organelle, plays a role in lipid metabolism and energy homeostasis through its interaction with mitochondria. However, the cellular functions and molecular mechanisms of the interaction remain ambiguous. Here we present data from transmission electron microscopy, fluorescence imaging, and reconstitution assays, demonstrating that lipid droplets physically contact mitochondria in vivo and in vitro. Using a bimolecular fluorescence complementation assay in Saccharomyces cerevisiae, we generated an interactomic map of protein-protein contacts of lipid droplets with mitochondria and peroxisomes. The lipid droplet proteins Erg6 and Pet10 were found to be involved in 75% of the interactions detected. Interestingly, interactions between 3 pairs of lipid metabolic enzymes were detected. Collectively, these data demonstrate that lipid droplets make physical contacts with mitochondria and peroxisomes, and reveal specific molecular interactions that suggest active participation of lipid droplets in lipid metabolism in yeast.

Keywords

peroxisomes / bimolecular fluorescence complementation assay / protein-protein interaction / lipid metabolism / Erg6

Cite this article

Download citation ▾
Jing Pu, Cheol Woong Ha, Shuyan Zhang, Jong Pil Jung, Won-Ki Huh, Pingsheng Liu. Interactomic study on interaction between lipid droplets and mitochondria. Prot Cell, 2011, 2(6): 487‒496 https://doi.org/10.1007/s13238-011-1061-y

References

[1] Beller, M., Riedel, D., J?nsch, L., Dieterich, G., Wehland, J., J?ckle, H., and Kühnlein, R.P. (2006). Characterization of the Drosophila lipid droplet subproteome. Mol Cell Proteomics 5, 1082–1094 .16543254
[2] Binns, D., Januszewski, T., Chen, Y., Hill, J., Markin, V.S., Zhao, Y., Gilpin, C., Chapman, K.D., Anderson, R.G., and Goodman, J.M. (2006). An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173, 719–731 .16735577
[3] Blanchette-Mackie, E.J., and Scow, R.O. (1983). Movement of lipolytic products to mitochondria in brown adipose tissue of young rats: an electron microscope study. J Lipid Res 24, 229–244 .6842081
[4] Blondel, M., Bach, S., Bamps, S., Dobbelaere, J., Wiget, P., Longaretti, C., Barral, Y., Meijer, L., and Peter, M. (2005). Degradation of Hof1 by SCF(Grr1) is important for actomyosin contraction during cytokinesis in yeast. EMBO J 24, 1440–1452 .15775961
[5] Brasaemle, D.L., Dolios, G., Shapiro, L., and Wang, R. (2004). Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279, 46835–46842 .15337753
[6] Cermelli, S., Guo, Y., Gross, S.P., and Welte, M.A. (2006). The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 16, 1783–1795 .16979555
[7] Egan, J.J., Greenberg, A.S., Chang, M.K., Wek, S.A., Moos, M.C. Jr, and Londos, C. (1992). Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc Natl Acad Sci U S A 89, 8537–8541 .1528859
[8] Gaber, R.F., Copple, D.M., Kennedy, B.K., Vidal, M., and Bard, M. (1989). The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol Cell Biol 9, 3447–3456 .2677674
[9] Goodman, J.M. (2008). The gregarious lipid droplet. J Biol Chem 283, 28005–28009 .18611863
[10] Guo, Y., Jangi, S., and Welte, M.A. (2005). Organelle-specific control of intracellular transport: distinctly targeted isoforms of the regulator Klar. Mol Biol Cell 16, 1406–1416 .15647372
[11] Hu, C.D., and Kerppola, T.K. (2003). Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21, 539–545 .12692560
[12] Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., and O’Shea, E.K. (2003). Global analysis of protein localization in budding yeast. Nature 425, 686–691 .14562095
[13] J?gerstr?m, S., Polesie, S., Wickstr?m, Y., Johansson, B.R., Schr?der, H.D., H?jlund, K., and Bostr?m, P. (2009). Lipid droplets interact with mitochondria using SNAP23. Cell Biol Int 33, 934–940 .19524684
[14] Kalashnikova, M.M., and Fadeeva, E.O. (2006). Ultrastructural study of liver cells from rooks living in ecologically unfavorable areas. Izv Akad Nauk Ser Biol (2), 133–141 .16634429
[15] Katavic, V., Agrawal, G.K., Hajduch, M., Harris, S.L., and Thelen, J.J. (2006). Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6, 4586–4598 .16847873
[16] Liu, P., Bartz, R., Zehmer, J.K., Ying, Y., and Anderson, R.G. (2008). Rab-regulated membrane traffic between adiposomes and multiple endomembrane systems. Methods Enzymol 439, 327–337 .18374175
[17] Liu, P., Bartz, R., Zehmer, J.K., Ying, Y.S., Zhu, M., Serrero, G., and Anderson, R.G. (2007). Rab-regulated interaction of early endosomes with lipid droplets. Biochim Biophys Acta 1773, 784–793 .17395284
[18] Liu, P., Ying, Y., Zhao, Y., Mundy, D.I., Zhu, M., and Anderson, R.G. (2004). Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279, 3787–3792 .14597625
[19] Martin, S., and Parton, R.G. (2006). Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7, 373–378 .16550215
[20] Murphy, D.J. (2001). The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40, 325–438 .11470496
[21] Murphy, S., Martin, S., and Parton, R.G. (2009). Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta 1791, 441–447 .18708159
[22] Novikoff, A.B., Novikoff, P.M., Rosen, O.M., and Rubin, C.S. (1980). Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol 87, 180–196 .7191426
[23] Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504 .14597658
[24] Shaw, C.S., Jones, D.A., and Wagenmakers, A.J. (2008). Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol 129, 65–72 .17938948
[25] Sung, M.K., and Huh, W.K. (2007). Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae. Yeast 24, 767–775 .17534848
[26] Tarnopolsky, M.A., Rennie, C.D., Robertshaw, H.A., Fedak-Tarnopolsky, S.N., Devries, M.C., and Hamadeh, M.J. (2007). Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol 292, R1271–R1278 .17095651
[27] Tauchi-Sato, K., Ozeki, S., Houjou, T., Taguchi, R., and Fujimoto, T. (2002). The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem 277, 44507–44512 .12221100
[28] Tedrick, K., Trischuk, T., Lehner, R., and Eitzen, G. (2004). Enhanced membrane fusion in sterol-enriched vacuoles bypasses the Vrp1p requirement. Mol Biol Cell 15, 4609–4621 .15254266
[29] Turró, S., Ingelmo-Torres, M., Estanyol, J.M., Tebar, F., Fernández, M.A., Albor, C.V., Gaus, K., Grewal, T., Enrich, C., and Pol, A. (2006). Identification and characterization of associated with lipid droplet protein 1: A novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7, 1254–1269 .17004324
[30] Zehmer, J.K., Huang, Y., Peng, G., Pu, J., Anderson, R.G., and Liu, P. (2009). A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9, 914–921 .19160396
[31] Zhang, S., Du, Y., Wang, Y., and Liu, P. (2010). Lipid Droplet — A Cellular Organelle for Lipid Metabolism. Acta Biophisica Sinica 26, 97–105 .
[32] Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386 .15550674
AI Summary AI Mindmap
PDF(336 KB)

Accesses

Citations

Detail

Sections
Recommended

/